Change search
ReferencesLink to record
Permanent link

Direct link
Adhesive Fiber Stratification in Uropathogenic Escherichia coli Biofilms Unveils Oxygen-Mediated Control of Type 1 Pili
Umeå University, Faculty of Science and Technology, Department of Chemistry. Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR).
Show others and affiliations
2015 (English)In: PLoS Pathogens, ISSN 1553-7366, E-ISSN 1553-7374, Vol. 11, no 3, e1004697Article in journal (Refereed) Published
Abstract [en]

Bacterial biofilms account for a significant number of hospital-acquired infections and complicate treatment options, because bacteria within biofilms are generally more tolerant to antibiotic treatment. This resilience is attributed to transient bacterial subpopulations that arise in response to variations in the microenvironment surrounding the biofilm. Here, we probed the spatial proteome of surface-associated single-species biofilms formed by uropathogenic Escherichia coli (UPEC), the major causative agent of community-acquired and catheter-associated urinary tract infections. We used matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) imaging mass spectrometry (IMS) to analyze the spatial proteome of intact biofilms in situ. MALDI-TOF IMS revealed protein species exhibiting distinct localizations within surface-associated UPEC biofilms, including two adhesive fibers critical for UPEC biofilm formation and virulence: type 1 pili (Fim) localized exclusively to the air-exposed region, while curli amyloid fibers localized to the air-liquid interface. Comparison of cells grown aerobically, fermentatively, or utilizing an alternative terminal electron acceptor showed that the phase-variable fim promoter switched to the "FF" orientation under oxygen-deplete conditions, leading to marked reduction of type 1 pili on the bacterial cell surface. Conversely, S pili whose expression is inversely related to fim expression were upregulated under anoxic conditions. Tethering the fim promoter in the "ON" orientation in anaerobically grown cells only restored type 1 pili production in the presence of an alternative terminal electron acceptor beyond oxygen. Together these data support the presence of at least two regulatory mechanisms controlling fim expression in response to oxygen availability and may contribute to the stratification of extracellular matrix components within the biofilm. MALDI IMS facilitated the discovery of these mechanisms, and we have demonstrated that this technology can be used to interrogate subpopulations within bacterial biofilms.

Place, publisher, year, edition, pages
2015. Vol. 11, no 3, e1004697
National Category
Microbiology in the medical area
URN: urn:nbn:se:umu:diva-103564DOI: 10.1371/journal.ppat.1004697ISI: 000352201900026PubMedID: 25738819OAI: diva2:813785
Available from: 2015-05-25 Created: 2015-05-21 Last updated: 2015-05-25Bibliographically approved

Open Access in DiVA

fulltext(1619 kB)57 downloads
File information
File name FULLTEXT01.pdfFile size 1619 kBChecksum SHA-512
Type fulltextMimetype application/pdf

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Good, James A. D.Almqvist, Fredrik
By organisation
Department of ChemistryUmeå Centre for Microbial Research (UCMR)
In the same journal
PLoS Pathogens
Microbiology in the medical area

Search outside of DiVA

GoogleGoogle Scholar
Total: 57 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 172 hits
ReferencesLink to record
Permanent link

Direct link