umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A methodology to investigate the building energy performance gap
Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics. (Energi ; Arcum)ORCID iD: 0000-0003-1657-7376
Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics. (Energi ; Arcum)
Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics. (Energi)
2015 (English)In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118Article in journal (Other academic) Submitted
Abstract [en]

In order to evaluate compliance with requirements on building energy performance, it is necessary to find strategies to process discrepancies from the results of forward simulations in the design stage and of measurements in the operated stage. The gap between designed performance and measured performance is referred to as the “performance gap”. It can be divided into a procurement gap (between intended design and verified performance) and an operational gap (between verified performance and non-normalized measurements).  

In this work we introduced a methodology for performance gap analysis, based on separating the procurement- and operational gap. An important component to do this is calibrations of calculations using measured data. The suggested methodology allows for more detailed verifications of building energy performance and can be used to study how indicators reflect the performance gap. The proposed methodology is tested using data from a well-documented and measured operated single family building, in sub-arctic climate in Sweden.

The indicators studied in the verification were carefully analyzed. The methodology was found reliable based on the obtained results and a sensitivity analysis. An overall observation is that the applicability of the methodology depends on the accuracy of the hybrid method. The accuracy of the performance gap analysis per definition depends on the available information of the operated building, and consequently to access to extensive measured data.

Place, publisher, year, edition, pages
2015.
Keyword [en]
performance gap, building energy performance, energy performance evaluation, calibrated simulation, measurements
National Category
Other Civil Engineering
Identifiers
URN: urn:nbn:se:umu:diva-103748OAI: oai:DiVA.org:umu-103748DiVA: diva2:814978
Available from: 2015-05-28 Created: 2015-05-28 Last updated: 2017-12-04
In thesis
1. Achieving building energy performance: requirements and evaluation methods for residential buildings in Sweden, Norway, and Finland
Open this publication in new window or tab >>Achieving building energy performance: requirements and evaluation methods for residential buildings in Sweden, Norway, and Finland
2015 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

Building energy performance has always been important in the cold climate of Sweden, Norway and Finland. To meet the goal that all new buildings should be nearly zero-energy buildings by 2020, set in the EU directive 2010/31/EU [1] on the energy performance of buildings (EPBD recast), the building sector in Europe now faces a transition towards buildings with improved energy performance. In such a transition, a discussion is needed about the objective of the improvement – why, or to what end, the building energy performance should be improved. The objective of improving building energy performance is often a political decision, but scientific research can contribute with knowledge on how the objectives can be achieved.

This thesis addresses how the indicators used in the requirements used to achieve building energy performance in Sweden, Norway, and Finland, and the methods used to evaluate these requirements, reflect building energy performance. It also addresses difficulties in achieving comparable and verifiable indicators in evaluations of building energy performance. The research objective has two parts: to review, compare, and discuss (i) requirements and (ii) evaluation methods used to achieve energy performance of residential buildings in Sweden, Norway and Finland. The work in this thesis includes reviews of the requirements used in national building codes and passive house criteria to achieve building energy performance, of methods used to evaluate compliance with such requirements, and of methods used specifically to evaluate the indicator Envelope Air Tightness.

The results show that different sets of indicators are used to achieve building energy performance in the studied building codes and passive house criteria. The methods used to evaluate compliance with requirements used to achieve building energy performance are also different, but calculation methods are generally more often used than measurement methods. The calculation- and measurement methods used are often simple. A methodology to analyze the deviation between predictions- and measurements of building energy performance (the performance gap) was developed, to investigate the effects of different evaluation methods on different indicators used to achieve building energy performance. The methodology was tested in a case-study. This study indicated that the choice of method affects which parts of the performance gap reflected in the indicators Supplied Energy (see Terminology), Net Energy (see Terminology), and Overall U-value. Among the reviewed methods to evaluate air tightness, the Fan/Blower Door Pressurization is well known and preferred by professionals in the field. The results in this thesis may be useful when choosing indicators and evaluation methods to achieve different objectives of improving building energy performance and in the quest towards comparable and verifiable indicators used to achieve building energy performance.

Place, publisher, year, edition, pages
Umeå: Umeå universitet, 2015. 50 p.
Keyword
building codes, energy performance, evaluation methods, air tightness
National Category
Other Civil Engineering Building Technologies Energy Systems
Identifiers
urn:nbn:se:umu:diva-103749 (URN)978-91-7601-297-0 (ISBN)
Presentation
2015-06-04, MC 314, Umeå university, 901 87 Umeå, 16:33 (English)
Supervisors
Projects
Increasing Energy Efficiency in Buildings (IEEB)Sustainable Buildings for the High North (SBHN)
Available from: 2015-08-25 Created: 2015-05-28 Last updated: 2015-08-25Bibliographically approved

Open Access in DiVA

No full text

Search in DiVA

By author/editor
Allard, IngridOlofsson, ThomasÖstin, Ronny
By organisation
Department of Applied Physics and Electronics
In the same journal
Applied Energy
Other Civil Engineering

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 627 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf