umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Mutations in Collagen, Type XVII, Alpha 1 (COL17A1) Cause Epithelial Recurrent Erosion Dystrophy (ERED)
Umeå University, Faculty of Medicine, Department of Medical Biosciences, Medical and Clinical Genetics.
Umeå University, Faculty of Medicine, Department of Clinical Sciences, Ophthalmology.
UCL Institute of Ophthalmology, London, UK.
Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
Show others and affiliations
2015 (English)In: Human Mutation, ISSN 1059-7794, E-ISSN 1098-1004, Vol. 36, no 4, 463-473 p.Article in journal (Refereed) Published
Abstract [en]

Corneal dystrophies are a clinically and genetically heterogeneous group of inherited disorders that bilaterally affect corneal transparency. They are defined according to the corneal layer affected and by their genetic cause. In this study, we identified a dominantly inherited epithelial recurrent erosion dystrophy (ERED)-like disease that is common in northern Sweden. Whole-exome sequencing resulted in the identification of a novel mutation, c.2816C>T, p.T939I, in the COL17A1 gene, which encodes collagen type XVII alpha 1. The variant segregated with disease in a genealogically expanded pedigree dating back 200 years. We also investigated a unique COL17A1 synonymous variant, c.3156C>T, identified in a previously reported unrelated dominant ERED-like family linked to a locus on chromosome 10q23-q24 encompassing COL17A1. We show that this variant introduces a cryptic donor site resulting in aberrant pre-mRNA splicing and is highly likely to be pathogenic. Bi-allelic COL17A1 mutations have previously been associated with a recessive skin disorder, junctional epidermolysis bullosa, with recurrent corneal erosions being reported in some cases. Our findings implicate presumed gain-of-function COL17A1 mutations causing dominantly inherited ERED and improve understanding of the underlying pathology.

Place, publisher, year, edition, pages
John Wiley & Sons, 2015. Vol. 36, no 4, 463-473 p.
Keyword [en]
COL17A1, BP180, cornea dystrophy, ERED, ddPCR
National Category
Medical Bioscience
Identifiers
URN: urn:nbn:se:umu:diva-103155DOI: 10.1002/humu.22764ISI: 000352304200011PubMedID: 25676728OAI: oai:DiVA.org:umu-103155DiVA: diva2:815161
Note

Contract grant sponsors: Umeå University and Västerbotten County Council, Research and Development Foundation sponsored by Västerbotten County Council, Cronqvists Stiftelse (administered by The Swedish Society of Medicine); Ögonfonden, Stiftelsen KMA; the National Swedish Research Council (521-2013-2612); National Institute for Health Research Biomedical Research Centre at Moorfields Eye Hospital and UCL Institute of Ophthalmology; Moorfields Special Trustees; Moorfields Eye Charity; the Lanvern foundation.

Available from: 2015-05-29 Created: 2015-05-18 Last updated: 2017-12-04Bibliographically approved
In thesis
1. Underlying genetic mechanisms of hereditary dystrophies in retina and cornea
Open this publication in new window or tab >>Underlying genetic mechanisms of hereditary dystrophies in retina and cornea
2017 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Inherited retinal and corneal dystrophies represent a group of disorders with great genetic heterogeneity. Over 250 genes are associated with retinal diseases and 16 genes are causative of corneal dystrophies. This thesis is focused on finding the genetic causes of corneal dystrophy, Leber congenital amaurosis (LCA), Stargardt disease and retinitis pigmentosa in families from northern Sweden.  By whole exome sequencing a novel mutation, c.2816C>T, p.Thr939Ile, in Collagen Type XVII, Alpha 1 chain, COL17A1, gene was identified in several families with epithelial recurrent erosion dystrophy (ERED). We showed that the COL17A1 protein is expressed in the basement membrane of the cornea, explaining the mutation involvement in the corneal symptoms. We could link all the families in this study to a couple born in the late 1700s confirming a founder mutation in northern Sweden. Our finding highlights role of COL17A1 in ERED and suggests screening of this gene in patients with similar phenotype worldwide. Furthermore the genetic causes in several retinal degenerations were identified. In one family with two recessive disorders, LCA and Stargardt disease, a novel stop mutation, c.2557C>T, p.Gln853Stop, was detected in all LCA patients. In the Stargardt patients two intronic variants, the novel c.4773+3A>G and c.5461-10T>C, were detected in the ABCA4 gene. One individual was homozygous for the known variant c.5461-10T>C and the other one was compound heterozygote with both variants present. Both variants, c.4773+3A>G and c.5461-10T>C caused exon skipping in HEK293T cells demonstrated by in vitro splice assay, proving their pathogenicity in Stargardt disease. Finally, in recessive retinitis pigmentosa, Bothnia Dystrophy (BD), we identified a second mutation in the RLBP1 gene, c.677T>A, p.Met226Lys. Thus, BD is caused not only by common c.700C>T variant but also by homozygosity of c.677T>A or compound heterozygosity. Notably, known variant, c.40C>T, p.R14W in the CAIV gene associated with a dominant retinal dystrophy RP17 was detected in one of the compound BD heterozygote and his unaffected mother. This variant appears to be a benign variant in the population of northern Sweden.

In conclusion, novel genetic causes of retinal dystrophies in northern Sweden were found demonstrating the heterogeneity and complexity of retinal diseases. Identification of the genetic defect in COL17A1 in the corneal dystrophy contributes to understanding ERED pathogenesis and encourages refinement of IC3D classification. Our results provide valuable information for future molecular testing and genetic counselling of the families.

Place, publisher, year, edition, pages
Umeå: Umeå Universitet, 2017. 57 p.
Series
Umeå University medical dissertations, ISSN 0346-6612 ; 1872
Keyword
Cornea, retina, gene, mutation detection, inherited diseases
National Category
Genetics
Research subject
Genetics
Identifiers
urn:nbn:se:umu:diva-130538 (URN)978-91-7601-626-8 (ISBN)
Public defence
2017-02-17, Major Groove, Målpunkt J-11, Norrlands Universitetssjukhus, Umeå, 13:00 (English)
Opponent
Supervisors
Available from: 2017-01-27 Created: 2017-01-23 Last updated: 2017-02-01Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Jonsson, FridaByström, BeritBackman, Ludvig J.Kellgren, ThereseRyden, PatrikSandgren, OlaDanielson, PatrikGolovleva, Irina
By organisation
Medical and Clinical GeneticsOphthalmologyAnatomyDepartment of Mathematics and Mathematical Statistics
In the same journal
Human Mutation
Medical Bioscience

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 367 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf