Change search
ReferencesLink to record
Permanent link

Direct link
Biomechanical, biochemical and structural correlations in immature and mature rabbit articular cartilage.
Department of Clinical Neurophysiology, Kuopio University Hospital, Kuopio, Finland; Department of Clinical Radiology, Kuopio University Hospital, Kuopio, Finland.
Department of Anatomy, Institute of Biomedicine, University of Kuopio, Kuopio, Finland.
Department of Anatomy, Institute of Biomedicine, University of Kuopio, Kuopio, Finland.
Department of Anatomy, Institute of Biomedicine, University of Kuopio, Kuopio, Finland.
Show others and affiliations
2009 (English)In: Osteoarthritis and Cartilage, ISSN 1063-4584, E-ISSN 1522-9653, Vol. 17, no 12, 1628-1638 p., 19615962Article in journal (Refereed) Published
Abstract [en]

OBJECTIVE: The structure and composition of articular cartilage change during development and growth. These changes lead to alterations in the mechanical properties of cartilage. In the present study, biomechanical, biochemical and structural relationships of articular cartilage during growth and maturation of rabbits are investigated.

DESIGN: Articular cartilage specimens from the tibial medial plateaus and femoral medial condyles of female New Zealand white rabbits were collected from seven age-groups; 0 days (n=29), 11 days (n=30), 4 weeks (n=30), 6 weeks (n=30), 3 months (n=24), 6 months (n=24) and 18 months (n=19). The samples underwent mechanical testing under creep indentation. From the mechanical response, instantaneous and equilibrium moduli were determined. Biochemical analyses of tissue collagen, hydroxylysylpyridinoline (HP) and pentosidine (PEN) cross-links in full thickness cartilage samples were conducted. Proteoglycans were investigated depth-wise from the tissue sections by measuring the optical density of Safranin-O-stained samples. Furthermore, depth-wise collagen architecture of articular cartilage was analyzed with polarized light microscopy. Finite element analyses of the samples from different age-groups were conducted to reveal tensile and compressive properties of the fibril network and the matrix of articular cartilage, respectively.

RESULTS: Tissue thickness decreased from approximately 3 to approximately 0.5mm until the age of 3 months, while the instantaneous modulus increased with age prior to peak at 4-6 weeks. A lower equilibrium modulus was observed before 3-month-age, after which the equilibrium modulus continued to increase. Collagen fibril orientation angle and parallelism index were inversely related to the instantaneous modulus, tensile fibril modulus and tissue thickness. Collagen content and cross-linking were positively related to the equilibrium compressive properties of the tissue.

CONCLUSIONS: During maturation, significant modulation of tissue structure, composition and mechanical properties takes place. Importantly, the present study provides insight into the mechanical, chemical and structural interactions that lead to functional properties of mature articular cartilage.

Place, publisher, year, edition, pages
Saunders Elsevier, 2009. Vol. 17, no 12, 1628-1638 p., 19615962
Keyword [en]
Articular cartilage, maturation, collagen, cross-linking, biomechanics, finite element
National Category
Orthopedics Other Physics Topics
Research subject
cellforskning; Orthopaedics; Biochemistry
URN: urn:nbn:se:umu:diva-106532DOI: 10.1016/j.joca.2009.07.002PubMedID: 19615962OAI: diva2:842016
Available from: 2015-07-16 Created: 2015-07-16 Last updated: 2015-07-16

Open Access in DiVA

No full text

Other links

Publisher's full textPubMedArticle web page

Search in DiVA

By author/editor
Lammi, Mikko
In the same journal
Osteoarthritis and Cartilage
OrthopedicsOther Physics Topics

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 76 hits
ReferencesLink to record
Permanent link

Direct link