Change search
ReferencesLink to record
Permanent link

Direct link
Census Study of Real-Life Near-Side Crashes with Modern Side Airbag-Equipped Vehicles in the United States
Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Surgery.
Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Surgery.
Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Surgery.
2015 (English)In: Traffic Injury Prevention, ISSN 1538-9588, E-ISSN 1538-957X, Vol. 16, no Supplement 1, S117-S124 p.Article in journal (Refereed) Published
Abstract [en]

Objective: This study aimed to investigate the crash characteristics, injury distribution, and injury mechanisms for Maximum Abbreviated Injury Score (MAIS) 2+ injured belted, near-side occupants in airbag-equipped modern vehicles. Furthermore, differences in injury distribution for senior occupants compared to non-senior occupants was investigated, as well as whether the near-side occupant injury risk to the head and thorax increases or decreases with a neighboring occupant. Method: National Automotive Sampling System's Crashworthiness Data System (NASS-CDS) data from 2000 to 2012 were searched for all side impacts (GAD L&R, all principal direction of force) for belted occupants in modern vehicles (model year > 1999). Rollovers were excluded, and only front seat occupants over the age of 10 were included. Twelve thousand three hundred fifty-four MAIS 2+ injured occupants seated adjacent to the intruding structure (near-side) and protected by at least one deployed side airbag were studied. To evaluate the injury risk influenced by the neighboring occupant, odds ratio with an induced exposure approach was used. Result: The most typical crash occurred either at an intersection or in a left turn where the striking vehicle impacted the target vehicle at a 60 to 70 degrees angle, resulting in a moderate change of velocity (delta-V) and intrusion at the B-pillar. The head, thorax, and pelvis were the most frequent body regions with rib fracture the most frequent specific injury. A majority of the head injuries included brain injuries without skull fracture, and non-senior rather than senior occupants had a higher frequency of head injuries on the whole. In approximately 50% of the cases there was a neighboring occupant influencing injury outcome. Conclusion: Compared to non-senior occupants, the senior occupants sustained a considerably higher rate of thoracic and pelvis injuries, which should be addressed by improved thorax side airbag protection. The influence on near-side occupant injury risk by the neighboring occupant should also be further evaluated. Furthermore, side airbag performance and injury assessments in intersection crashes, especially those involving senior occupants in lower severities, should be further investigated and side impact dummy biofidelity and injury criteria must be determined for these crash scenarios.

Place, publisher, year, edition, pages
2015. Vol. 16, no Supplement 1, S117-S124 p.
Keyword [en]
occupant-to-occupant interaction, senior occupants, injury mechanisms, in-depth study, side impact
National Category
URN: urn:nbn:se:umu:diva-106503DOI: 10.1080/15389588.2015.1022895ISI: 000355404600016PubMedID: 26027963OAI: diva2:842063
Available from: 2015-07-16 Created: 2015-07-14 Last updated: 2016-10-25Bibliographically approved
In thesis
1. Characteristics of nearside car crashes: an integrated approach to side impact safety
Open this publication in new window or tab >>Characteristics of nearside car crashes: an integrated approach to side impact safety
2016 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Introduction: Approximately 1.25 million people globally are killed in traffic accidents yearly. To achieve the UN Global Goal of a 50% reduction of fatal and serious injuries in 2020 a safer infrastructure, as well as new safety technologies, will be needed. Side crashes represent 20% of all serious and 25 % of fatal injuries. The overall aim of this thesis is to provide guidelines for improved side impact protection. First, by characterizing nearside crashes and injury outcome, including injuries from the farside occupant, for non-senior and senior front seat occupants. Second, to determine whether the WorldSID dummy provides opportunities for improved in-crash occupant protection. And third, by relating in-crash occupant protection to pre-crash countermeasures, to explore a holistic approach for side crashes using the integrated safety chain from safe driving to crash.

Methods: NASS/CDS data for both older and modern vehicles was used to provide exposure, incidence, and risk for fatal injury as well as detailed injury distribution and crash characteristics. The WorldSID dummy was compared to Post Mortem Human Subjects (PMHS) in impactor tests at high and low severities to demonstrate the possibilities of this tool. Crash tests were performed to evaluate WorldSID crash test dummy assessments of injuries found in the NASS/CDS data. The integrated safety chain was used to demonstrate how to evaluate occupant protection in side crashes from a larger perspective, involving infrastructure and Automated Emergency Braking.

Result: Most side crashes occur at intersections. The head, thorax, and pelvis are the most frequently injured body regions, and seniors have a higher risk for rib fractures compared to non-seniors. The WorldSID dummy response was similar to the PMHS response at the higher impact speed, but not at the lower. In conjunction with improved airbags infrastructural change, and the use of Automated Emergency Braking, can effectively reduce the number of fatalities and injured occupants in side impacts.

Conclusion: Future focus for side impact protection should be on intersection crashes, improved occupant protection for senior occupants, and protection for and from the farside occupant, reducing injury risk to the head, thorax, and pelvis. The WorldSID dummy has the ability to reproduce humanlike responses in lateral and oblique impacts. However, at a low crash severity, chest deflection could be underestimated, which must be taken into consideration when evaluating, for example, pre-crash inflated side airbags. Analyzing nearside crashes using the integrated safety chain shows that speed management by means of roundabouts is an efficient countermeasure reducing the number of injurious crashes, as well as reducing variations in crash severity. In combination with an Automated Emergency Braking a large part of side crashes could be avoided or crash severity mitigated. Rather than developing structures and airbags for high-speed crashes, it is important to consider alternative countermeasures. Hence the need for an integrated approach to side impacts.

Place, publisher, year, edition, pages
Umeå: Umeå universitet, 2016. 58 p.
Umeå University medical dissertations, ISSN 0346-6612 ; 1855
side impact, WorldSID, thorax, injuries, side airbag, sidokollision, WorldSID, thorax, injuries, side airbag
National Category
Research subject
biomechanics; Epidemiology
urn:nbn:se:umu:diva-126985 (URN)978-91-7601-587-2 (ISBN)
Public defence
2016-11-11, NUS 1D - Tandläkarhögskolan, Hörsal D, Umeå, 13:00 (Swedish)
Available from: 2016-10-25 Created: 2016-10-25 Last updated: 2016-10-25Bibliographically approved

Open Access in DiVA

fulltext(202 kB)98 downloads
File information
File name FULLTEXT01.pdfFile size 202 kBChecksum SHA-512
Type fulltextMimetype application/pdf

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Sunnevang, CeciliaLindkvist, MatsKrafft, Maria
By organisation
In the same journal
Traffic Injury Prevention

Search outside of DiVA

GoogleGoogle Scholar
Total: 98 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 72 hits
ReferencesLink to record
Permanent link

Direct link