Change search
ReferencesLink to record
Permanent link

Direct link
Towards carbon efficient biorefining: Multifunctional mesoporous solid acids obtained from biodiesel production wastes for biomass conversion
Show others and affiliations
2015 (English)In: Applied Catalysis B: Environmental, ISSN 0926-3373, E-ISSN 1873-3883, Vol. 176, 20-35 p.Article in journal (Refereed) Published
Abstract [en]

Multifunctional mesoporous solid acids were prepared by the sulfonation of carbonized de-oiled seed waste cake (DOWC), a solid waste from biodiesel production. Detailed structural characterization of the materials by elemental analysis, FT-IR, Raman, XRD, XPS, TGA, NH3-TPD and N-2-physisorption showed that they were structurally different from the carbohydrate and resin based sulfonated carbon catalysts. In addition to the typical -OH, -COOH and -SO3H groups they contain several N species (pyridinic, pyrrolic etc.) incorporated in their carbon frameworks. The basic structural unit of these materials is a flexible carbon nitride sheet which is extensively functionalized with acidic groups. Our results show distinct effects of raw material composition and preparation methods (activation, sulfonating agent etc.) on structure, stability, surface acidity and textural properties. Here, catalyst -SO3H density and porosity (pore size, pore volume and surface area) had a direct effect on activity. Also, H2SO4 was less useful than 4-BDS (4-benzenediazoniumsulfoante) as a sulfonating agent. The best catalysts with mesoporous structure (average pore diameter 3.9-4.8 nm, pore volume 0.28-0.46 cm(3) g(-1)) and -SO3H density (0.70-0.84 mmol/g(cat)) were obtained by 4-BDS sulfonation of chemically activated DOWCs. In contrast, hydrothermal H2SO4 sulfonation of DOWC produced a non-porous catalyst with high -SO3H density while those obtained by H2SO4 treatment of activated biomass (AC) had a porous structure with low -SO3H density (0.19 mmol/gcat). Furthermore, the reported catalysts show excellent activity in two reactions of interest in biomass conversion: cellulose saccharification (glucose yield 35-53%) and fatty acid esterification (conversion upto 97%) outperforming H2SO4, conventional solid acids (zeolites, ion-exchange resins etc.) as well as sulfonated carbons reported earlier works, confirming their potential as alternative environmentally benign solid catalysts for sustainable, carbon efficient biorefining.

Place, publisher, year, edition, pages
Elsevier, 2015. Vol. 176, 20-35 p.
Keyword [en]
Sulfonated carbons, Biorefining, Catalyst characterization, De-oiled waste cake, Biodiesel, Esterification, Reducing sugars
National Category
Physical Chemistry
URN: urn:nbn:se:umu:diva-106549DOI: 10.1016/j.apcatb.2015.03.005ISI: 000356549200003OAI: diva2:842510
Available from: 2015-07-20 Created: 2015-07-20 Last updated: 2015-08-07Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Mikkola, Jyri-Pekka
By organisation
Department of Chemistry
In the same journal
Applied Catalysis B: Environmental
Physical Chemistry

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 98 hits
ReferencesLink to record
Permanent link

Direct link