umu.sePublications
Change search

Cite
Citation style
• apa
• ieee
• modern-language-association-8th-edition
• vancouver
• Other style
More styles
Language
• de-DE
• en-GB
• en-US
• fi-FI
• nn-NO
• nn-NB
• sv-SE
• Other locale
More languages
Output format
• html
• text
• asciidoc
• rtf
On the Blocki-Zwonek conjectures and beyond
Umeå University, Faculty of Science and Technology, Department of Mathematics and Mathematical Statistics.
2015 (English)In: Archiv der Mathematik, ISSN 0003-889X, E-ISSN 1420-8938, Vol. 105, no 4, p. 371-380Article in journal (Refereed) Published
Abstract [en]

Let $${\Omega}$$ be a bounded pseudoconvex domain in $${\mathbb{C}^n}$$, and let $${g_{\Omega}(z,a)}$$ be the pluricomplex Green function with pole at a in $${\Omega}$$. Błocki and Zwonek conjectured that the function given by $$\begin{array}{ll}\alpha = \alpha_{\Omega}, a: (- \infty, 0) \ni t \mapsto \alpha (t) = e^{-2nt} \lambda_n \left( \{z \in \Omega: g_{\Omega}(z, a) < t \} \right)\end{array}$$ is nondecreasing, and that the function given by $$\begin{array}{ll}\beta = \beta_{\Omega}, a: (-\infty, 0) \ni t \to \beta(t)= \log \left(\lambda_n \left(\{z \in \Omega: g_{\Omega}(z,a)< t\}\right)\right)\end{array}$$ is convex. Here $${\lambda_{n}}$$ is the Lebesgue measure in $${\mathbb{C}^n}$$. In this note we give an affirmative answer to these conjectures when $${\Omega}$$ is biholomorphic to a bounded, balanced, and pseudoconvex domain in $${\mathbb{C}^n}$$, $${n\geq 1}$$. The aim of this note is to consider generalizations of the functions $${\alpha}$$, $${\beta}$$ defined by the Green function with two poles in $${\mathbb{D}\subset\mathbb{C}}$$. We prove that $${\alpha}$$ is not nondecreasing, and $${\beta}$$ is not convex. By using the product property for pluricomplex Green functions, we then generalize this to n-dimensions. Finally, we end this note by considering two other possibilities generalizing the Błocki–Zwonek conjectures.

Place, publisher, year, edition, pages
Springer, 2015. Vol. 105, no 4, p. 371-380
Keywords [en]
Bergman kernel, Błocki–Zwonek conjectures, Pluricomplex Green functions
National Category
Mathematical Analysis
Identifiers
ISI: 000361347100009OAI: oai:DiVA.org:umu-106678DiVA, id: diva2:843925
Available from: 2015-08-01 Created: 2015-08-01 Last updated: 2018-06-07Bibliographically approved

Open Access in DiVA

No full text in DiVA

Publisher's full text

Åhag, Per

Search in DiVA

Åhag, Per
By organisation
Department of Mathematics and Mathematical Statistics
In the same journal
Archiv der Mathematik
On the subject
Mathematical Analysis

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 235 hits

Cite
Citation style
• apa
• ieee
• modern-language-association-8th-edition
• vancouver
• Other style
More styles
Language
• de-DE
• en-GB
• en-US
• fi-FI
• nn-NO
• nn-NB
• sv-SE
• Other locale
More languages
Output format
• html
• text
• asciidoc
• rtf