umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
On the Blocki-Zwonek conjectures and beyond
Umeå University, Faculty of Science and Technology, Department of Mathematics and Mathematical Statistics.
2015 (English)In: Archiv der Mathematik, ISSN 0003-889X, E-ISSN 1420-8938, Vol. 105, no 4, 371-380 p.Article in journal (Refereed) Published
Abstract [en]

Let \({\Omega}\) be a bounded pseudoconvex domain in \({\mathbb{C}^n}\), and let \({g_{\Omega}(z,a)}\) be the pluricomplex Green function with pole at a in \({\Omega}\). Błocki and Zwonek conjectured that the function given by $$\begin{array}{ll}\alpha = \alpha_{\Omega}, a: (- \infty, 0) \ni t \mapsto \alpha (t) = e^{-2nt} \lambda_n \left( \{z \in \Omega: g_{\Omega}(z, a) < t \} \right)\end{array}$$ is nondecreasing, and that the function given by $$\begin{array}{ll}\beta = \beta_{\Omega}, a: (-\infty, 0) \ni t \to \beta(t)= \log \left(\lambda_n \left(\{z \in \Omega: g_{\Omega}(z,a)< t\}\right)\right)\end{array}$$ is convex. Here \({\lambda_{n}}\) is the Lebesgue measure in \({\mathbb{C}^n}\). In this note we give an affirmative answer to these conjectures when \({\Omega}\) is biholomorphic to a bounded, balanced, and pseudoconvex domain in \({\mathbb{C}^n}\), \({n\geq 1}\). The aim of this note is to consider generalizations of the functions \({\alpha}\), \({\beta}\) defined by the Green function with two poles in \({\mathbb{D}\subset\mathbb{C}}\). We prove that \({\alpha}\) is not nondecreasing, and \({\beta}\) is not convex. By using the product property for pluricomplex Green functions, we then generalize this to n-dimensions. Finally, we end this note by considering two other possibilities generalizing the Błocki–Zwonek conjectures.

Place, publisher, year, edition, pages
Springer, 2015. Vol. 105, no 4, 371-380 p.
Keyword [en]
Bergman kernel, Błocki–Zwonek conjectures, Pluricomplex Green functions
National Category
Mathematical Analysis
Identifiers
URN: urn:nbn:se:umu:diva-106678DOI: 10.1007/s00013-015-0810-1ISI: 000361347100009OAI: oai:DiVA.org:umu-106678DiVA: diva2:843925
Available from: 2015-08-01 Created: 2015-08-01 Last updated: 2017-12-04Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Authority records BETA

Åhag, Per

Search in DiVA

By author/editor
Åhag, Per
By organisation
Department of Mathematics and Mathematical Statistics
In the same journal
Archiv der Mathematik
Mathematical Analysis

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 194 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf