Change search
ReferencesLink to record
Permanent link

Direct link
Rapid evolution of a consumer stoichiometric trait destabilizes consumer-producer dynamics
Kyoto, Japan.
Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
Knoxville, USA.
Peterborough, ON, Canada.
Show others and affiliations
2015 (English)In: Oikos, ISSN 0030-1299, E-ISSN 1600-0706, Vol. 124, no 7, 960-969 p.Article in journal (Refereed) Published
Abstract [en]

Recent studies have shown that adaptive evolution can be rapid enough to affect contemporary ecological dynamics in nature (i.e. 'rapid evolution'). These studies tend to focus on trait functions relating to interspecific interactions; however, the importance of rapid evolution of stoichiometric traits has been relatively overlooked. Various traits can affect the balance of elements (carbon, nitrogen, and phosphorus) of organisms, and rapid evolution of such stoichiometric traits will not only alter population and community dynamics but also influence ecosystem functions such as nutrient cycling. Multiple environmental changes may exert a selection pressure leading to adaptation of stoichiometrically important traits, such as an organism's growth rate. In this paper, we use theoretical approaches to explore the connections between rapid evolution and ecological stoichiometry at both the population and ecosystem level. First, we incorporate rapid evolution into an ecological stoichiometry model to investigate the effects of rapid evolution of a consumer's stoichiometric phosphorus: carbon ratio on consumer-producer population dynamics. We took two complementary approaches, an asexual clonal genotype model and a quantitative genetic model. Next, we extended these models to explicitly track nutrients in order to evaluate the effect of rapid evolution at the ecosystem level. Our model results indicate rapid evolution of the consumer stoichiometric trait can cause complex dynamics where rapid evolution destabilizes population dynamics and rescues the consumer population from extinction (evolutionary rescue). The model results also show that rapid evolution may influence the level of nutrients available in the environment and the flux of nutrients across trophic levels. Our study represents an important step for theoretical integration of rapid evolution and ecological stoichiometry.

Place, publisher, year, edition, pages
John Wiley & Sons, 2015. Vol. 124, no 7, 960-969 p.
National Category
URN: urn:nbn:se:umu:diva-106790DOI: 10.1111/oik.02388ISI: 000357824900016OAI: diva2:846948
Available from: 2015-08-18 Created: 2015-08-07 Last updated: 2015-08-18Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Meunier, Cedric L.
By organisation
Department of Ecology and Environmental Sciences
In the same journal

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 68 hits
ReferencesLink to record
Permanent link

Direct link