umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Delamination of graphite oxide in a liquid upon cooling.
Umeå University, Faculty of Science and Technology, Department of Physics.
Umeå University, Faculty of Science and Technology, Department of Physics.
Show others and affiliations
2015 (English)In: Nanoscale, ISSN 2040-3364, E-ISSN 2040-3372, Vol. 7, no 29, 12625-30 p.Article in journal (Refereed) Published
Abstract [en]

Graphite oxide (GO) in liquid acetonitrile undergoes a transition from an ordered phase around ambient temperature to a gel-like disordered phase at temperatures below 260 K, as demonstrated by in situ X-ray diffraction. The stacking order of GO layers is restored below the freezing point of acetonitrile (199 K). The reversible swelling transition between a stacked crystalline phase and an amorphous delaminated state observed upon cooling provides an unusual example of increased structural disorder at lower temperatures. The formation of the gel-like phase is attributed to the thermo-responsive conformational change of individual GO flakes induced by stronger solvation. Scanning force microscopy demonstrates that GO flakes deposited onto a solid substrate from acetonitrile dispersions at a temperature below 260 K exhibit corrugations and wrinkling which are not observed for the flakes deposited at ambient temperature. The thermo-responsive transition between the delaminated and stacked phases reported here can be used for sonication-free dispersion of graphene oxide, micro-container applications, or the preparation of new composite materials.

Place, publisher, year, edition, pages
2015. Vol. 7, no 29, 12625-30 p.
National Category
Physical Sciences
Identifiers
URN: urn:nbn:se:umu:diva-107187DOI: 10.1039/c5nr02564hISI: 000358207700046PubMedID: 26147576OAI: oai:DiVA.org:umu-107187DiVA: diva2:847252
Available from: 2015-08-19 Created: 2015-08-19 Last updated: 2017-12-04Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Talyzin, AlexandrKlechikov, Alexey
By organisation
Department of Physics
In the same journal
Nanoscale
Physical Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 120 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf