umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Tychonoff's theorem and its equivalence with the axiom of choice
Umeå University, Faculty of Science and Technology, Department of Mathematics and Mathematical Statistics.
2015 (English)Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesis
Abstract [en]

In this essay we give an elementary introduction to topology so that we can prove Tychonoff’s theorem, and also its equivalence with the axiom of choice.

Abstract [sv]

Denna uppsats tillhandahåller en grundläggande introduktion till topologi för att sedan bevisa Tychonoff’s theorem, samt dess ekvivalens med urvalsaxiomet.

Place, publisher, year, edition, pages
2015.
Keyword [en]
Axoim of Choice, Compact set, Product space, Tychonoff's Theorem
National Category
Other Mathematics Other Mathematics
Identifiers
URN: urn:nbn:se:umu:diva-107423OAI: oai:DiVA.org:umu-107423DiVA: diva2:847896
Supervisors
Examiners
Available from: 2015-11-04 Created: 2015-08-21 Last updated: 2016-02-26Bibliographically approved

Open Access in DiVA

fulltext(791 kB)162 downloads
File information
File name FULLTEXT02.pdfFile size 791 kBChecksum SHA-512
00c6ee7a874f741c2f61d6568d9fe9e5668625f039e6091550618ed85f418cf8a64943ca3be67b66e5fa901e4f932b9d99010b2e8ea5d7a56a777a67210b58ea
Type fulltextMimetype application/pdf

By organisation
Department of Mathematics and Mathematical Statistics
Other MathematicsOther Mathematics

Search outside of DiVA

GoogleGoogle Scholar
Total: 205 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 1179 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf