umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Performance-Based Service Differentiation in Clouds
Umeå University, Faculty of Science and Technology, Department of Computing Science.
Umeå University, Faculty of Science and Technology, Department of Computing Science.
Umeå University, Faculty of Science and Technology, Department of Computing Science.
Umeå University, Faculty of Science and Technology, Department of Computing Science.
2015 (English)In: 2015 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid), IEEE conference proceedings, 2015, 505-514 p.Conference paper, Published paper (Refereed)
Abstract [en]

Due to fierce competition, cloud providers need to run their data-centers efficiently. One of the issues is to increase data-center utilization while maintaining applications' performance targets. Achieving high data-center utilization while meeting applications' performance is difficult, as data-center overload may lead to poor performance of hosted services. Service differentiation has been proposed to control which services get degraded. However, current approaches are capacity-based, which are oblivious to the observed performance of each service and cannot divide the available capacity among hosted services so as to minimize overall performance degradation. In this paper we propose performance-based service differentiation. In case enough capacity is available, each service is automatically allocated the right amount of capacity that meets its target performance, expressed either as response time or throughput. In case of overload, we propose two service differentiation schemes that dynamically decide which services to degrade and to what extent. We carried out an extensive set of experiments using different services -- interactive as well as non-interactive -- by varying the workload mixes of each service over time. The results demonstrate that our solution precisely provides guaranteed performance or service differentiation depending on available capacity.

Place, publisher, year, edition, pages
IEEE conference proceedings, 2015. 505-514 p.
Keyword [en]
cloud computing, computer centres, interactive systems, cloud providers, data centers, performance-based service differentiation, Computational modeling, Degradation, Noise, Resource management, Throughput, Time factors, Time measurement, cloud, elasticity, guaranteed service, performance models, service differentiation
National Category
Computer Systems
Identifiers
URN: urn:nbn:se:umu:diva-108026DOI: 10.1109/CCGrid.2015.145ISI: 000380493100051ISBN: 978-1-4799-8006-2 (print)OAI: oai:DiVA.org:umu-108026DiVA: diva2:850463
Conference
2015 15th IEEE ACM International Symposium on Cluster Cloud and Grid Computing (CCGrid 2015),Shenzhen, PEOPLES R CHINA,MAY 04-07, 2015
Available from: 2015-09-01 Created: 2015-09-01 Last updated: 2016-09-13Bibliographically approved
In thesis
1. Autonomous cloud resource provisioning: accounting, allocation, and performance control
Open this publication in new window or tab >>Autonomous cloud resource provisioning: accounting, allocation, and performance control
2015 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The emergence of large-scale Internet services coupled with the evolution of computing technologies such as distributed systems, parallel computing, utility computing, grid, and virtualization has fueled a movement toward a new resource provisioning paradigm called cloud computing. The main appeal of cloud computing lies in its ability to provide a shared pool of infinitely scalable computing resources for cloud services, which can be quickly provisioned and released on-demand with minimal effort. The rapidly growing interest in cloud computing from both the public and industry together with the rapid expansion in scale and complexity of cloud computing resources and the services hosted on them have made monitoring, controlling, and provisioning cloud computing resources at runtime into a very challenging and complex task. This thesis investigates algorithms, models and techniques for autonomously monitoring, controlling, and provisioning the various resources required to meet services’ performance requirements and account for their resource usage.

Quota management mechanisms are essential for controlling distributed shared resources so that services do not exceed their allocated or paid-for budget. Appropriate cloud-wide monitoring and controlling of quotas must be exercised to avoid over- or under-provisioning of resources. To this end, this thesis presents new distributed algorithms that efficiently manage quotas for services running across distributed nodes.

Determining the optimal amount of resources to meet services’ performance requirements is a key task in cloud computing. However, this task is extremely challenging due to multi-faceted issues such as the dynamic nature of cloud environments, the need for supporting heterogeneous services with different performance requirements, the unpredictable nature of services’ workloads, the non-triviality of mapping performance measurements into resources, and resource shortages. Models and techniques that can predict the optimal amount of resources needed to meet service performance requirements at runtime irrespective of variations in workloads are proposed. Moreover, different service differentiation schemes are proposed for managing temporary resource shortages due to, e.g., flash crowds or hardware failures.

In addition, the resources used by services must be accounted for in order to properly bill customers. Thus, monitoring data for running services should be collected and aggregated to maintain a single global state of the system that can be used to generate a single bill for each customer. However, collecting and aggregating such data across geographical distributed locations is challenging because the management task itself may consume significant computing and network resources unless done with care. A consistency and synchronization mechanism that can alleviate this task is proposed.

Place, publisher, year, edition, pages
Umeå: Umeå University, 2015. 39 p.
Series
Report / UMINF, ISSN 0348-0542 ; 15.10
Keyword
cloud computing, distributed infrastructure, monitoring, accounting, performance modeling, service differentiation
National Category
Computer Systems
Research subject
Computing Science
Identifiers
urn:nbn:se:umu:diva-107955 (URN)978-91-7601-334-2 (ISBN)
Public defence
2015-09-28, MA121 (MIT building), Umeå University, Umeå, 10:15 (English)
Opponent
Supervisors
Available from: 2015-09-07 Created: 2015-08-31 Last updated: 2017-01-17Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Lakew, Ewnetu B.Klein, CristianHernandez-Rodriguez, FranciscoElmroth, Erik
By organisation
Department of Computing Science
Computer Systems

Search outside of DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric score

doi
isbn
urn-nbn
Total: 428 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf