umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Measuring cloud workload burstiness
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap. (Distributed Systems)
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.
Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för datavetenskap. (Distributed Systems)
Visa övriga samt affilieringar
2014 (Engelska)Ingår i: 2014 IEEE/ACM 7th International Conference on Utility and Cloud Computing (UCC), IEEE conference proceedings, 2014, s. 566-572Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Workload burstiness and spikes are among the main reasons for service disruptions and decrease in the Quality-of-Service (QoS) of online services. They are hurdles that complicate autonomic resource management of datacenters. In this paper, we review the state-of-the-art in online identification of workload spikes and quantifying burstiness. The applicability of some of the proposed techniques is examined for Cloud systems where various workloads are co-hosted on the same platform. We discuss Sample Entropy (SampEn), a measure used in biomedical signal analysis, as a potential measure for burstiness. A modification to the original measure is introduced to make it more suitable for Cloud workloads.

Ort, förlag, år, upplaga, sidor
IEEE conference proceedings, 2014. s. 566-572
Nationell ämneskategori
Datorsystem
Identifikatorer
URN: urn:nbn:se:umu:diva-108397DOI: 10.1109/UCC.2014.87ISI: 000380558700080ISBN: 978-1-4799-7881-6 (tryckt)OAI: oai:DiVA.org:umu-108397DiVA, id: diva2:852781
Konferens
7th International Conference on Utility and Cloud Computing (UCC), 8-11 December 2014, London, England, United Kingdom
Forskningsfinansiär
EU, Europeiska forskningsrådetVetenskapsrådetTillgänglig från: 2015-09-10 Skapad: 2015-09-10 Senast uppdaterad: 2018-06-07Bibliografiskt granskad
Ingår i avhandling
1. Workload characterization, controller design and performance evaluation for cloud capacity autoscaling
Öppna denna publikation i ny flik eller fönster >>Workload characterization, controller design and performance evaluation for cloud capacity autoscaling
2015 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

This thesis studies cloud capacity auto-scaling, or how to provision and release re-sources to a service running in the cloud based on its actual demand using an auto-matic controller. As the performance of server systems depends on the system design,the system implementation, and the workloads the system is subjected to, we focuson these aspects with respect to designing auto-scaling algorithms. Towards this goal,we design and implement two auto-scaling algorithms for cloud infrastructures. Thealgorithms predict the future load for an application running in the cloud. We discussthe different approaches to designing an auto-scaler combining reactive and proactivecontrol methods, and to be able to handle long running requests, e.g., tasks runningfor longer than the actuation interval, in a cloud. We compare the performance ofour algorithms with state-of-the-art auto-scalers and evaluate the controllers’ perfor-mance with a set of workloads. As any controller is designed with an assumptionon the operating conditions and system dynamics, the performance of an auto-scalervaries with different workloads.In order to better understand the workload dynamics and evolution, we analyze a6-years long workload trace of the sixth most popular Internet website. In addition,we analyze a workload from one of the largest Video-on-Demand streaming servicesin Sweden. We discuss the popularity of objects served by the two services, the spikesin the two workloads, and the invariants in the workloads. We also introduce, a mea-sure for the disorder in a workload, i.e., the amount of burstiness. The measure isbased on Sample Entropy, an empirical statistic used in biomedical signal processingto characterize biomedical signals. The introduced measure can be used to charac-terize the workloads based on their burstiness profiles. We compare our introducedmeasure with the literature on quantifying burstiness in a server workload, and showthe advantages of our introduced measure.To better understand the tradeoffs between using different auto-scalers with differ-ent workloads, we design a framework to compare auto-scalers and give probabilisticguarantees on the performance in worst-case scenarios. Using different evaluation cri-teria and more than 700 workload traces, we compare six state-of-the-art auto-scalersthat we believe represent the development of the field in the past 8 years. Knowingthat the auto-scalers’ performance depends on the workloads, we design a workloadanalysis and classification tool that assigns a workload to its most suitable elasticitycontroller out of a set of implemented controllers. The tool has two main components;an analyzer, and a classifier. The analyzer analyzes a workload and feeds the analysisresults to the classifier. The classifier assigns a workload to the most suitable elasticitycontroller based on the workload characteristics and a set of predefined business levelobjectives. The tool is evaluated with a set of collected real workloads, and a set ofgenerated synthetic workloads. Our evaluation results shows that the tool can help acloud provider to improve the QoS provided to the customers.

Ort, förlag, år, upplaga, sidor
Umeå: Umeå University, 2015. s. 16
Serie
Report / UMINF, ISSN 0348-0542 ; 15.09
Nyckelord
cloud computing, autoscaling, workloads, performance modeling, controller design
Nationell ämneskategori
Datorsystem
Identifikatorer
urn:nbn:se:umu:diva-108398 (URN)978-91-7601-330-4 (ISBN)
Disputation
2015-10-02, N360, Naturveterhuset Building, Umeå University, Umeå, 14:00 (Engelska)
Opponent
Handledare
Forskningsfinansiär
EU, Europeiska forskningsrådetVetenskapsrådet
Tillgänglig från: 2015-09-11 Skapad: 2015-09-10 Senast uppdaterad: 2018-06-07Bibliografiskt granskad

Open Access i DiVA

fulltext(1468 kB)227 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 1468 kBChecksumma SHA-512
018896d9c39ffc1e0f028a908c6854381aa1e9b1c7dd754b738a0320e72b9b72cc82b6446699dd95581c78ca93807b5d1469e7a8bda7a1b06318620c78b24f39
Typ fulltextMimetyp application/pdf

Övriga länkar

Förlagets fulltext

Personposter BETA

Ali-Eldin, AhmedSeleznjev, OlegSjöstedt-de Luna, SaraTordsson, JohanElmroth, Erik

Sök vidare i DiVA

Av författaren/redaktören
Ali-Eldin, AhmedSeleznjev, OlegSjöstedt-de Luna, SaraTordsson, JohanElmroth, Erik
Av organisationen
Institutionen för datavetenskapInstitutionen för matematik och matematisk statistik
Datorsystem

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 227 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 1206 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf