umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Prediction of ignition limits with respect to fuel fraction of inert gases.: Evaluation of cost effective CFD-method using cold flow simulations
Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
2015 (English)Independent thesis Advanced level (professional degree), 20 credits / 30 HE creditsStudent thesis
Abstract [en]

Improving fuel flexibility for gas turbines is one advantageous property on the market. It may lead to increased feasibility by potential customers and thereby give increased competiveness for production and retail companies of gas turbines such as Siemens Industrial Turbomachinery in Finspång. For this reason among others SIT assigned Anton Berg to perform several ignition tests at SIT’s atmospheric combustion rig (ACR) as his master thesis project. In the ACR he tested the limits for how high amounts of inert gases (N2 and CO2) that the rig, prepared with the 3rd generation DLE-burner operative in both the SGT-700 and SGT-800 engine, could ignite on (Berg, 2012).

Research made by Abdel-Gay and Bradley already in 1985 summarized methane and propane combustion articles showing that a Karlovitz number (Chemical time scale/Turbulent time scale) of 1.5 could be used as a quenching limit for turbulent combustion (Abdel-Gayed & Bradley, 1985). Furthermore in 2010 Shy et al. showed that the Karlovitz number showed good correlation to ignition transition from a flamelet to distributed regime (Shy, et al., 2010). They also showed that this ignition transition affected the ignition probability significantly.

Based on the results of these studies among others a CFD concept predicting ignition probability from cold flow simulations were created and tested in several applications at Cambridge University (Soworka, et al., 2014) (Neophytou, et al., 2012). With Berg’s ignition tests as reference results and a draft for a cost effective ignition prediction model this thesis where started.

With the objectives of evaluating the ignition prediction against Berg’s results and at the same time analyze if there would be any better suited igniter spot 15 cold flow simulations on the ACR burner and combustor geometry were conducted. Boundary conditions according to selected tests were chosen with fuels composition ranging from pure methane/propane to fractions of 40/60 mole% CO2 and 50/75 mole% N2.

By evaluating the average Karlovitz number in spherical ignition volumes around the igniter position successful ignition could be predicted if the Karlovitz number were below 1.5. The results showed promising tendencies but no straightforward prediction could be concluded from the evaluated approach. A conclusion regarding that the turbulence model probably didn’t predict mixing good enough was made which implied that no improved igniter position could be recommended. However by development of the approach by using a more accurate turbulence model as LES for example may improve the mixing and confirm the good prediction tendencies found. Possibilities for significantly improved ignition limits were also showed for 3-19% increase in equivalence ratio around the vicinity of the igniter.

Place, publisher, year, edition, pages
2015. , 93 p.
Keyword [en]
Combustion, gas turbines, CFD
National Category
Energy Engineering Fluid Mechanics and Acoustics
Identifiers
URN: urn:nbn:se:umu:diva-109094OAI: oai:DiVA.org:umu-109094DiVA: diva2:854804
External cooperation
Siemens Industrial Turbomachinery AB
Subject / course
Energiteknik
Educational program
Master of Science Programme in Energy Engineering
Supervisors
Examiners
Available from: 2015-10-10 Created: 2015-09-17 Last updated: 2015-10-10Bibliographically approved

Open Access in DiVA

Prediction of ignition limits(5598 kB)305 downloads
File information
File name FULLTEXT01.pdfFile size 5598 kBChecksum SHA-512
07faa0741988980a92ad9d6de3178c1c8f50f64613e07212d9fec92ff38fc2d806e429a31f7778c50c13dde1f88582239b4093c4a1cac5e7ce33f672d19d3f6b
Type fulltextMimetype application/pdf

By organisation
Department of Applied Physics and Electronics
Energy EngineeringFluid Mechanics and Acoustics

Search outside of DiVA

GoogleGoogle Scholar
Total: 305 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 191 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf