Change search
ReferencesLink to record
Permanent link

Direct link
Influenza A(H7N9) Virus Acquires Resistance-Related Neuraminidase I222T Substitution When Infected Mallards Are Exposed to Low Levels of Oseltamivir in Water
Umeå University, Faculty of Science and Technology, Department of Chemistry.
Show others and affiliations
2015 (English)In: Antimicrobial Agents and Chemotherapy, ISSN 0066-4804, E-ISSN 1098-6596, Vol. 59, no 9, 5196-5202 p.Article in journal (Refereed) Published
Abstract [en]

Influenza A virus (IAV) has its natural reservoir in wild waterfowl, and new human IAVs often contain gene segments originating from avian IAVs. Treatment options for severe human influenza are principally restricted to neuraminidase inhibitors (NAIs), among which oseltamivir is stockpiled in preparedness for influenza pandemics. There is evolutionary pressure in the environment for resistance development to oseltamivir in avian IAVs, as the active metabolite oseltamivir carboxylate (OC) passes largely undegraded through sewage treatment to river water where waterfowl reside. In an in vivo mallard (Anas platyrhynchos) model, we tested if low-pathogenic avian influenza A(H7N9) virus might become resistant if the host was exposed to low levels of OC. Ducks were experimentally infected, and OC was added to their water, after which infection and transmission were maintained by successive introductions of uninfected birds. Daily fecal samples were tested for IAV excretion, genotype, and phenotype. Following mallard exposure to 2.5 μg/liter OC, the resistance-related neuraminidase (NA) I222T substitution, was detected within 2 days during the first passage and was found in all viruses sequenced from subsequently introduced ducks. The substitution generated 8-fold and 2.4-fold increases in the 50% inhibitory concentration (IC50) for OC (P < 0.001) and zanamivir (P = 0.016), respectively. We conclude that OC exposure of IAV hosts, in the same concentration magnitude as found in the environment, may result in amino acid substitutions, leading to changed antiviral sensitivity in an IAV subtype that can be highly pathogenic to humans. Prudent use of oseltamivir and resistance surveillance of IAVs in wild birds are warranted.

Place, publisher, year, edition, pages
American Society for Biochemistry and Molecular Biology, 2015. Vol. 59, no 9, 5196-5202 p.
National Category
Chemical Sciences
URN: urn:nbn:se:umu:diva-109148DOI: 10.1128/AAC.00886-15ISI: 000364343900014OAI: diva2:855372
Available from: 2015-09-21 Created: 2015-09-21 Last updated: 2016-05-16Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Söderström, HannaOlsen, Björn
By organisation
Department of Chemistry
In the same journal
Antimicrobial Agents and Chemotherapy
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 94 hits
ReferencesLink to record
Permanent link

Direct link