umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
ELF noise fields: a review
Umeå University, Faculty of Medicine, Department of Radiation Sciences, Radiation Physics.
Örebro University, Sweden; Seibersdorf, Austria.
2010 (English)In: Electromagnetic Biology and Medicine, ISSN 1536-8378, E-ISSN 1536-8386, Vol. 29, no 3, 72-97 p.Article in journal (Refereed) Published
Abstract [en]

The debate as to whether low-level electromagnetic fields can affect biological systems and in the long term cause health effects has been going on for a long time. Yet the interaction of weak electromagnetic fields (EMF) with living cells, undoubtedly a most important phenomenon, is still not well understood. The exact mechanisms by which the effects are produced have not been identified. Furthermore, it is not possible to clearly define which aspects of an EMF exposure that constitute the "dose." One of the groups that contributed to solving this problem is the Bioelectromagnetics group at Catholic University of America (CUA), Washington, D. C. Their work has been devoted to investigating the physical parameters that are needed to obtain an effect of EMF exposure on biological systems, and also how to inhibit the effect. This is a review of their work on bioeffects caused by low-level EMF, their dependence on coherence time, constancy, spatial averaging, and also how the effects can be modified by an applied ELF noise magnetic field. The group has been using early chick embryos, and L929 and Daudi cells as their main experimental systems. The review also covers the work of other groups on low-level effects and the inhibition of the effects with an applied noise field. The group at CUA has shown that biological effects can be found after exposure to low-level ELF and RF electromagnetic fields, and when effects are observed, applying an ELF magnetic noise field inhibits the effects. Also, other research groups have tried to replicate the studies from the CUA group, or to apply EMF noise to suppress EMF-induced effects. Replications of the CUA effects have not always been successful. However, in all cases where the noise field has been applied to prevent an observed effect, it has been successful in eliminating the effect.

Place, publisher, year, edition, pages
Informa Healthcare, 2010. Vol. 29, no 3, 72-97 p.
Keyword [en]
Low-level effect, Broadband noise, Coherence, Constancy
National Category
Biophysics
Identifiers
URN: urn:nbn:se:umu:diva-109021DOI: 10.3109/15368378.2010.482487ISI: 000281889300002PubMedID: 20707642OAI: oai:DiVA.org:umu-109021DiVA: diva2:857947
Available from: 2015-09-30 Created: 2015-09-17 Last updated: 2017-12-01Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Hansson Mild, Kjell
By organisation
Radiation Physics
In the same journal
Electromagnetic Biology and Medicine
Biophysics

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 53 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf