umu.sePublikationer
Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
On the practice of ignoring center-patient interactions in evaluating hospital performance
Umeå universitet, Samhällsvetenskapliga fakulteten, Handelshögskolan vid Umeå universitet, Statistik. (Stat4Reg)ORCID-id: 0000-0003-3298-1555
2016 (Engelska)Ingår i: Statistics in Medicine, ISSN 0277-6715, E-ISSN 1097-0258, Vol. 35, nr 2, s. 227-238Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

We evaluate the performance of medical centers based on a continuous or binary patient outcome (e.g., 30-day mortality). Common practice adjusts for differences in patient mix through outcome regression models, which include patient-specific baseline covariates (e.g., age and disease stage) besides center effects. Because a large number of centers may need to be evaluated, the typical model postulates that the effect of a center on outcome is constant over patient characteristics. This may be violated, for example, when some centers are specialized in children or geriatric patients. Including interactions between certain patient characteristics and the many fixed center effects in the model increases the risk for overfitting, however, and could imply a loss of power for detecting centers with deviating mortality. Therefore, we assess how the common practice of ignoring such interactions impacts the bias and precision of directly and indirectly standardized risks. The reassuring conclusion is that the common practice of working with the main effects of a center has minor impact on hospital evaluation, unless some centers actually perform substantially better on a specific group of patients and there is strong confounding through the corresponding patient characteristic. The bias is then driven by an interplay of the relative center size, the overlap between covariate distributions, and the magnitude of the interaction effect. Interestingly, the bias on indirectly standardized risks is smaller than on directly standardized risks. We illustrate our findings by simulation and in an analysis of 30-day mortality on Riksstroke.

Ort, förlag, år, upplaga, sidor
2016. Vol. 35, nr 2, s. 227-238
Nyckelord [en]
Firth correction, causal effects, direct and indirect standardization, misspecified model, quality of care
Nationell ämneskategori
Sannolikhetsteori och statistik
Forskningsämne
statistik
Identifikatorer
URN: urn:nbn:se:umu:diva-109660DOI: 10.1002/sim.6634ISI: 000367972400005PubMedID: 26303843ISBN: 1097-0258 (Electronic) 0277-6715 (Linking) (tryckt)OAI: oai:DiVA.org:umu-109660DiVA, id: diva2:858589
Tillgänglig från: 2015-10-02 Skapad: 2015-10-02 Senast uppdaterad: 2018-06-07Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextPubMed

Personposter BETA

Eriksson, Marie

Sök vidare i DiVA

Av författaren/redaktören
Eriksson, Marie
Av organisationen
Statistik
I samma tidskrift
Statistics in Medicine
Sannolikhetsteori och statistik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
pubmed
isbn
urn-nbn

Altmetricpoäng

doi
pubmed
isbn
urn-nbn
Totalt: 215 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf