umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Generation of wakefields by whistlers in spin quantum magnetoplasmas
Umeå University, Faculty of Science and Technology, Department of Physics.
Umeå University, Faculty of Science and Technology, Department of Physics.
Umeå University, Faculty of Science and Technology, Department of Physics.
Umeå University, Faculty of Science and Technology, Department of Physics.
2010 (English)In: Physics of Plasmas, ISSN 1070-664X, E-ISSN 1089-7674, Vol. 17, no 12, 122306Article in journal (Refereed) Published
Abstract [en]

The excitation of electrostatic wakefields in a magnetized spin quantum plasma by the classical and the spin-induced ponderomotive force (CPF and SPF, respectively) due to whistler waves is reported. The nonlinear dynamics of the whistlers and the wakefields is shown to be governed by a coupled set of nonlinear Schrodinger and driven Boussinesq-like equations. It is found that the quantum force associated with the Bohm potential introduces two characteristic length scales, which lead to the excitation of multiple wakefields in a strongly magnetized dense plasma (with a typical magnetic field strength B(0)greater than or similar to 10(9) T and particle density n(0)greater than or similar to 10(36) m(-3)), where the SPF strongly dominates over the CPF. In other regimes, namely, B(0)less than or similar to 10(8) T and n(0)less than or similar to 10(35) m(-3), where the SPF is comparable to the CPF, a plasma wakefield can also be excited self-consistently with one characteristic length scale. Numerical results reveal that the wakefield amplitude is enhanced by the quantum tunneling effect; however, it is lowered by the external magnetic field. Under appropriate conditions, the wakefields can maintain high coherence over multiple plasma wavelengths and thereby accelerate electrons to extremely high energies. The results could be useful for particle acceleration at short scales, i.e., at nanometer and micrometer scales, in magnetized dense plasmas where the driver is the whistler wave instead of a laser or a particle beam.

Place, publisher, year, edition, pages
American Institute of Physics (AIP), 2010. Vol. 17, no 12, 122306
Keyword [en]
plasma physics, excitation, driven, wave, acceleration, model, wake
National Category
Fusion, Plasma and Space Physics
Identifiers
URN: urn:nbn:se:umu:diva-109566DOI: 10.1063/1.3527995ISI: 000285770500014OAI: oai:DiVA.org:umu-109566DiVA: diva2:859292
Available from: 2015-10-06 Created: 2015-09-30 Last updated: 2017-12-01Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Misra, Amar PBrodin, GertMarklund, MattiasShukla, Padma K
By organisation
Department of Physics
In the same journal
Physics of Plasmas
Fusion, Plasma and Space Physics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 35 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf