Change search
ReferencesLink to record
Permanent link

Direct link
Iron behavior in a northern estuary: Large pools of non-sulfidized Fe(II)associated with organic matter
Umeå University, Faculty of Science and Technology, Department of Chemistry.
Show others and affiliations
2015 (English)In: Chemical Geology, ISSN 0009-2541, E-ISSN 1872-6836, Vol. 413, 73-85 p.Article in journal (Refereed) Published
Abstract [en]

The estuaries of the Northern Baltic Sea (Gulf of Bothnia) receive an abundance of diagenetically reactivecatchment-derived Fe, which is to a large degree complexed with organic matter or present as Fe (hydr-)oxides.However, our understanding of sedimentary Fe diagenesis in these estuaries is limited. To address this limitation,the present study examines Fe geochemistry in a 3.5-m-thick estuarine benthic mud layer and three samples ofsuspended particulate matter of a catchment on the eastern Gulf of Bothnia. The age–depth model of the mud,constructed on the basis of sedimentary features as well as 137Cs and aquatic plant 14C determinations, revealeda high average rate of sedimentation (5 cm · yr−1) for the upper mud unit (0–182.5 cm, corresponding to1973–2011), in response to intensive land-use (ditching) in the catchment since the 1960s and 1970s. The intensiveland-use has resulted in a strong increase in the Fe accumulation rates, but has not caused a recognizableimpact on the diagenetic processes of Fe including features such as degree of sulfidization and solid-phasepartitioning. Iron X-ray absorption spectroscopy (XAS) indicated that in the suspended particulate matter,large proportions (47–58%) of Fe occur as Fe(III)-organic complexes and 2-line ferrihydrite. In the mud, the formeris completely reduced, and reactive Fe (defined via extraction with 1MHCl) was high throughout (52–68%,median=61%) and strongly dominated by Fe(II). This reactive Fe(II) pool was sulfidized to only a limited extent(degree of reactive sulfidization = 11–26%, median = 17%). This phenomenon is attributed to the brackishwaterconditions (i.e. low in sulfate) and the abundant input of reactive Fe(III) from the catchment, leading toa surplus of dissolved Fe2+ over dissolved sulfide in the sediment. The low availability of dissolved sulfide, incombinationwith the high average sedimentation rate, limits the formation of intermediate reduced sulfur compoundsat the water–sediment interface, thereby retarding the conversion of FeS into pyrite (ratios of pyrite-S toAVS=0.17–1.73, median=0.37; degree of pyritization=1–17%, median=3%). Iron XAS, in combinationwithwavelet transform analysis, of representative sediment segments from the upper and lower mud units suggeststhat the non-sulfidized Fe(II) pool is dominantly complexed by organic matter, with the remaining Fe(II) occurringas mackinawite. This has implications for the understanding of early Fe diagenesis in settings with a highinput of organic matter and relatively low supply of sulfate.

Place, publisher, year, edition, pages
2015. Vol. 413, 73-85 p.
Keyword [en]
Iron diagenesis, X-ray absorption spectroscopy (XAS), Sulfidization, Gulf of Bothnia, Sediments, Non-sulfidized reactive Fe pools
National Category
URN: urn:nbn:se:umu:diva-110305DOI: 10.1016/j.chemgeo.2015.08.013ISI: 000361845700007OAI: diva2:862080
Available from: 2015-10-20 Created: 2015-10-20 Last updated: 2015-11-24Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Torbjörn, Karlsson
By organisation
Department of Chemistry
In the same journal
Chemical Geology

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 82 hits
ReferencesLink to record
Permanent link

Direct link