umu.sePublications
Change search
ReferencesLink to record
Permanent link

Direct link
Scale-invariant corner keypoints
Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics. (DML,I2lab)
KTH.
Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics. (DML,I2lab)
(English)Manuscript (preprint) (Other academic)
Abstract [en]

Effective and efficient generation of keypoints from images is the first step of many computer vision applications, such as object matching. The last decade presented us with an arms race toward faster and more robust keypoint detection, feature description and matching. This resulted in several new algorithms, for example Scale Invariant Features Transform (SIFT), Speed-up Robust Feature (SURF), Oriented FAST and Rotated BRIEF (ORB) and Binary Robust Invariant Scalable Keypoints (BRISK). The keypoint detection has been improved using various techniques in most of these algorithms. However, in the search for faster computing, the accuracy of the algorithms is decreasing. In this paper, we present SICK (Scale-Invariant Corner Keypoints), which is a novel method for fast keypoint detection. Our experiment results show that SICK is faster to compute and more robust than recent state-of-the-art methods. 

Keyword [en]
Keypoint detection, image matching, edge detection, corner detection, scale-space
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Research subject
Signal Processing
Identifiers
URN: urn:nbn:se:umu:diva-111182OAI: oai:DiVA.org:umu-111182DiVA: diva2:867821
Conference
IEEE International Conference on Image Processing, October 2014
Note

IEEE International Conference on Image Processing, October 2014

Available from: 2015-11-06 Created: 2015-11-06 Last updated: 2016-02-23
In thesis
1. Interest Curves: Concept, Evaluation, Implementation and Applications
Open this publication in new window or tab >>Interest Curves: Concept, Evaluation, Implementation and Applications
2015 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Image features play important roles in a wide range of computer vision applications, such as image registration, 3D reconstruction, object detection and video understanding. These image features include edges, contours, corners, regions, lines, curves, interest points, etc. However, the research is fragmented in these areas, especially when it comes to line and curve detection. In this thesis, we aim to discover, integrate, evaluate and summarize past research as well as our contributions in the area of image features. This thesis provides a comprehensive framework of concept, evaluation, implementation, and applications for image features.

Firstly, this thesis proposes a novel concept of interest curves. Interest curves is a concept derived and extended from interest points. Interest curves are significant lines and arcs in an image that are repeatable under various image transformations. Interest curves bring clear guidelines and structures for future curve and line detection algorithms and related applications.

Secondly, this thesis presents an evaluation framework for detecting and describing interest curves. The evaluation framework provides a new paradigm for comparing the performance of state-of-the-art line and curve detectors under image perturbations and transformations.

Thirdly, this thesis proposes an interest curve detector (Distinctive Curves, DICU), which unifies the detection of edges, corners, lines and curves. DICU represents our state-of-the-art contribution in the areas concerning the detection of edges, corners, curves and lines. Our research efforts cover the most important attributes required by these features with respect to robustness and efficiency.

Interest curves preserve richer geometric information than interest points. This advantage gives new ways of solving computer vision problems. We propose a simple description method for curve matching applications. We have found that our proposed interest curve descriptor outperforms all state-of-the-art interest point descriptors (SIFT, SURF, BRISK, ORB, FREAK). Furthermore, in our research we design a novel object detection algorithm that only utilizes DICU geometries without using local feature appearance. We organize image objects as curve chains and to detect an object, we search this curve chain in the target image using dynamic programming. The curve chain matching is scale and rotation-invariant as well as robust to image deformations. These properties have given us the possibility of resolving the rotation-variance problem in object detection applications. In our face detection experiments, the curve chain matching method proves to be scale and rotation-invariant and very computational efficient.

Abstract [sv]

Bilddetaljer har en viktig roll i ett stort antal applikationer för datorseende, t.ex., bildregistrering, 3D-rekonstruktion, objektdetektering och videoförståelse. Dessa bilddetaljer inkluderar kanter, konturer, hörn, regioner, linjer, kurvor, intressepunkter, etc. Forskningen inom dessa områden är splittrad, särskilt för detektering av linjer och kurvor. I denna avhandling, strävar vi efter att hitta, integrera, utvärdera och sammanfatta tidigare forskning tillsammans med vår egen forskning inom området för bildegenskaper. Denna avhandling presenterar ett ramverk för begrepp, utvärdering, utförande och applikationer för bilddetaljer.

För det första föreslår denna avhandling ett nytt koncept för intressekurvor. Intressekurvor är ett begrepp som härrör från intressepunkter och det är viktiga linjer och bågar i bilden som är repeterbara oberoende av olika bildtransformationer. Intressekurvor ger en tydlig vägledning och struktur för framtida algoritmer och relaterade tillämpningar för kurv- och linjedetektering.

För det andra, presenterar denna avhandling en utvärderingsram för detektorer och beskrivningar av intressekurvor. Utvärderingsramverket utgör en ny paradigm för att jämföra resultatet för de bästa möjliga teknikerna för linje- och kurvdetektorer vid bildstörningar och bildtransformationer.

För det tredje presenterar denna avhandling en detektor för intressekurvor (Distinctive curves, DICU), som förenar detektering av kanter, hörn, linjer och kurvor. DICU representerar vårt främsta bidrag inom området detektering av kanter, hörn, kurvor och linjer. Våra forskningsinsatser täcker de viktigaste attribut som krävs av dessa funktioner med avseende på robusthet och effektivitet.

Intressekurvor innehåller en rikare geometrisk information än intressepunkter. Denna fördel öppnar för nya sätt att lösa problem för datorseende. Vi föreslår en enkel beskrivningsmetod för kurvmatchningsapplikationer och den föreslagna deskriptorn för intressekurvor överträffar de bästa tillgängliga deskriptorerna för intressepunkter (SIFT, SURF, BRISK, ORB, och FREAK). Dessutom utformar vi en ny objektdetekteringsalgoritm som bara använder geometri för DICU utan att använda det lokala utseendet. Vi organiserar bildobjekt som kurvkedjor och för att upptäcka ett objekt behöver vi endast söka efter denna kurvkedja i målbilden med hjälp av dynamisk programmering. Kurvkedjematchningen är oberoende av skala och rotationer samt robust vid bilddeformationer. Dessa egenskaper ger möjlighet att lösa problemet med rotationsberoende inom objektdetektering. Vårt ansiktsigenkänningsexperiment visar att kurvkedjematchning är oberoende av skala och rotationer och att den är mycket beräkningseffektiv.

Place, publisher, year, edition, pages
Umeå: Umeå Universitet, 2015. 206 p.
Series
Digital Media Lab, ISSN 1652-6295 ; 21
Keyword
scale-invariance, edge, corner, curve, line, matching, object detection
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Research subject
Signal Processing
Identifiers
urn:nbn:se:umu:diva-111175 (URN)978-91-7601-353-3 (ISBN)
Public defence
2015-11-27, MIT-huset, MA121, Umeå universitet, Umeå, 13:00 (English)
Opponent
Supervisors
Projects
INTRO – INteractive RObotics research network
Funder
EU, FP7, Seventh Framework Programme
Available from: 2015-11-06 Created: 2015-11-06 Last updated: 2015-11-10Bibliographically approved

Open Access in DiVA

No full text

Search in DiVA

By author/editor
Li, BoLi, HaiboSöderström, Ulrik
By organisation
Department of Applied Physics and Electronics
Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 59 hits
ReferencesLink to record
Permanent link

Direct link