umu.sePublications
Change search
ReferencesLink to record
Permanent link

Direct link
Effects of an antihistamine on carbon and nutrient recycling in streams
Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences. (Arcum)
Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
Umeå University, Faculty of Science and Technology, Department of Chemistry.
Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
Show others and affiliations
2015 (English)In: Science of the Total Environment, ISSN 0048-9697, E-ISSN 1879-1026, Vol. 538, 240-245 p.Article in journal (Refereed) Published
Abstract [en]

In stream ecosystems, microbes and macroinvertebrates consume leaf litter deposited from the riparian vegetation, and thereby recycle resources tied up in the litter. Several environmental variables influence rates of this recycling, but it is not well known if common pharmaceuticals, such as antihistamines, originating from waste-water effluent, have additional impacts. Exposure to dilute concentrations of antihistamines may adversely influence aquatic detritivorous invertebrates, because invertebrates use histamines for neurotransmission, resulting in hampered recycling of resource tied up in leaf detritus. In this study, we therefore investigated if the antihistamine fexofenadine, at a concentration of 2000 ng l(-1), alters rates of leaf litter decomposition in stream microcosms. Stonefly larvae (n = 10, per microcosm), together with natural microbial communities, served as main decomposer organisms on alder leaf litter. First, we used 30 microcosms containing fexofenadine, while the other 30 served as non-contaminated controls, and of each 30 microcosms, 14 contained stonefly larvae and microbes, while the remaining 16 contained only microbes. We found, in contrast to our hypothesis, that fexofenadine had no effect on leaf litter decomposition via impacts on the stonefly larvae. However, independent on if stoneflies were present or not, concentrations of organic carbon (TOC) and nitrogen (N) were strongly affected, with 20-26 and 24-31% lower concentrations of TOC and N, respectively, in the presence of fexofenadine. Second, in a scaled down follow-up experiment we found that microbial activity increased by 85%, resulting in a 10% decrease in pH, in the presence of fexofenadine. While the antihistamine concentration we used is higher than those thus far found in the field (1-10 ng l(-1)), it is still 100 times lower than the predicted no-effect concentration for fexofenadine. As such, our results indicate that low mu g l(-1) levels of antihistamines can have an effect on carbon and nutrient recycling in aquatic system. (C) 2015 Elsevier B.V. All rights reserved.

Place, publisher, year, edition, pages
Elsevier, 2015. Vol. 538, 240-245 p.
Keyword [en]
Aquatic insects, TOC, Fexofenadine, Nitrogen, Pharmaceuticals, Stonefly
National Category
Ecology
Identifiers
URN: urn:nbn:se:umu:diva-111457DOI: 10.1016/j.scitotenv.2015.08.061ISI: 000363348900024PubMedID: 26311580OAI: oai:DiVA.org:umu-111457DiVA: diva2:876569
Available from: 2015-12-04 Created: 2015-11-13 Last updated: 2016-06-21Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Jonsson, MicaelErshammar, EllenFick, JerkerBrodin, TomasKlaminder, Jonatan
By organisation
Department of Ecology and Environmental SciencesDepartment of Chemistry
In the same journal
Science of the Total Environment
Ecology

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 169 hits
ReferencesLink to record
Permanent link

Direct link