umu.sePublications
Change search
ReferencesLink to record
Permanent link

Direct link
Complete nucleotide sequence and polypeptide analysis of multicomponent phenol hydroxylase from Pseudomonas sp. strain CF600.
Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology).
Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology).
Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology).ORCID iD: 0000-0002-7349-1678
1990 (English)In: Journal of Bacteriology, ISSN 0021-9193, E-ISSN 1098-5530, Vol. 172, no 12Article in journal (Refereed) Published
Abstract [en]

Pseudomonas sp. strain CF600 metabolizes phenol and some of its methylated derivatives via a plasmid-encoded phenol hydroxylase and meta-cleavage pathway. The genes encoding the multicomponent phenol hydroxylase of this strain are located within a 5.5-kb SacI-NruI fragment. We report the nucleotide sequence and the polypeptide products of this 5.5-kb region. A combination of deletion analysis, expression of subfragments in tac expression vectors, and identification of polypeptide products in maxicells was used to demonstrate that the polypeptides observed are produced from the six open reading frames identified in the sequence. Expression of phenol hydroxylase activity in a laboratory Pseudomonas strain allows growth on phenol, owing to expression of this enzyme and the chromosomally encoded ortho-cleavage pathway. This system, in conjunction with six plasmids that each expressed all but one of the polypeptides, was used to demonstrate that all six polypeptides are required for growth on phenol.

Place, publisher, year, edition, pages
1990. Vol. 172, no 12
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:umu:diva-112349PubMedID: 2254258OAI: oai:DiVA.org:umu-112349DiVA: diva2:877219
Available from: 2015-12-06 Created: 2015-12-06 Last updated: 2015-12-06

Open Access in DiVA

No full text

PubMed

Search in DiVA

By author/editor
Shingler, V
By organisation
Department of Molecular Biology (Faculty of Science and Technology)
In the same journal
Journal of Bacteriology
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 10 hits
ReferencesLink to record
Permanent link

Direct link