umu.sePublications
Change search
ReferencesLink to record
Permanent link

Direct link
Purification and properties of the physically associated meta-cleavage pathway enzymes 4-hydroxy-2-ketovalerate aldolase and aldehyde dehydrogenase (acylating) from Pseudomonas sp. strain CF600.
Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology).
Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology).ORCID iD: 0000-0002-7349-1678
1993 (English)In: Journal of Bacteriology, ISSN 0021-9193, E-ISSN 1098-5530, Vol. 175, no 2Article in journal (Refereed) Published
Abstract [en]

The final two steps in the dmp operon-encoded meta-cleavage pathway for phenol degradation in Pseudomonas sp. strain CF600 involve conversion of 4-hydroxy-2-ketovalerate to pyruvate and acetyl coenzyme A (acetyl-CoA) by the enzymes 4-hydroxy-2-ketovalerate aldolase and aldehyde dehydrogenase (acylating) [acetaldehyde:NAD+ oxidoreductase (CoA acetylating), EC 1.2.1.10]. A procedure for purifying these two enzyme activities to homogeneity is reported here. The two activities were found to copurify through five different chromatography steps and ammonium sulfate fractionation, resulting in a preparation that contained approximately equal proportions of two polypeptides with molecular masses of 35 and 40 kDa. Amino-terminal sequencing revealed that the first six amino acids of each polypeptide were those deduced from the previously determined nucleotide sequences of the corresponding dmp operon-encoded genes. The isolated complex had a native molecular mass of 148 kDa, which is consistent with the presence of two of each polypeptide per complex. In addition to generating acetyl-CoA from acetaldehyde, CoA, and NAD+, the dehydrogenase was shown to acylate propionaldehyde, which would be generated by action of the meta-cleavage pathway enzymes on the substrates 3,4-dimethylcatechol and 4-methylcatechol. 4-Hydroxy-2-ketovalerate aldolase activity was stimulated by the addition of Mn2+ and, surprisingly, NADH to assay mixtures. The possible significance of the close physical association between these two polypeptides in ensuring efficient metabolism of the short-chain aldehyde generated by this pathway is discussed.

Place, publisher, year, edition, pages
1993. Vol. 175, no 2
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:umu:diva-112346PubMedID: 8419288OAI: oai:DiVA.org:umu-112346DiVA: diva2:877222
Available from: 2015-12-06 Created: 2015-12-06 Last updated: 2015-12-06

Open Access in DiVA

No full text

PubMed

Search in DiVA

By author/editor
Shingler, V
By organisation
Department of Molecular Biology (Faculty of Science and Technology)
In the same journal
Journal of Bacteriology
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 10 hits
ReferencesLink to record
Permanent link

Direct link