umu.sePublications
Change search
ReferencesLink to record
Permanent link

Direct link
Aromatic ligand binding and intramolecular signalling of the phenol-responsive sigma54-dependent regulator DmpR.
Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology). (Shingler V)
Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology). (Shingler V)
Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology). (Shingler V)
Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology).ORCID iD: 0000-0002-7349-1678
1998 (English)In: Molecular Microbiology, ISSN 0950-382X, E-ISSN 1365-2958, Vol. 28, no 1Article in journal (Refereed) Published
Abstract [en]

The Pseudomonas-derived sigma54-dependent regulator DmpR has an amino-terminal A-domain controlling the specificity of activation by aromatic effectors, a central C-domain mediating an ATPase activity essential for transcriptional activation and a carboxy-terminal D-domain involved in DNA binding. In the presence of aromatic effectors, the DmpR protein promotes transcription from the -24, -12 Po promoter controlling the expression of specialized (methyl)phenol catabolic enzymes. Previous analysis of DmpR has led to a model in which the A-domain acts as an interdomain repressor of DmpR's ATPase and transcriptional promoting property until specific aromatic effectors are bound. Here, the autonomous nature of the A-domain in exerting its biological functions has been dissected by expressing portions of DmpR as independent polypeptides. The A-domain of DmpR is shown to be both necessary and sufficient to bind phenol. Analysis of phenol binding suggests one binding site per monomer of DmpR, with a dissociation constant of 16 microM. The A-domain is also shown to have specific affinity for the C-domain and to repress the C-domain mediated ATPase activity in vitro autonomously. However, physical uncoupling of the A-domain from the remainder of the regulator results in a system that does not respond to aromatics by its normal derepression mechanism. The mechanistic implications of aromatic non-responsiveness of autonomously expressed A-domain, despite its demonstrated ability to bind phenol, are discussed.

Place, publisher, year, edition, pages
1998. Vol. 28, no 1
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:umu:diva-112330PubMedID: 9593302OAI: oai:DiVA.org:umu-112330DiVA: diva2:877239
Available from: 2015-12-06 Created: 2015-12-06 Last updated: 2015-12-06

Open Access in DiVA

No full text

PubMed

Search in DiVA

By author/editor
Shingler, V
By organisation
Department of Molecular Biology (Faculty of Science and Technology)
In the same journal
Molecular Microbiology
Natural Sciences

Search outside of DiVA

GoogleGoogle ScholarTotal: 1 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 11 hits
ReferencesLink to record
Permanent link

Direct link