umu.sePublications
Change search
ReferencesLink to record
Permanent link

Direct link
The regulatory N-terminal region of the aromatic-responsive transcriptional activator DmpR constrains nucleotide-triggered multimerisation.
Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology). (Shingler V)
Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology). (Shingler V)
Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology). (Shingler V)
Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology).ORCID iD: 0000-0002-7349-1678
2001 (English)In: Journal of Molecular Biology, ISSN 0022-2836, E-ISSN 1089-8638, Vol. 314, no 5Article in journal (Refereed) Published
Abstract [en]

The transcriptional promoting activity of DmpR is under the strict control of its aromatic effector ligands that are bound by its regulatory N-terminal domain. The positive control function of DmpR resides within the central C-domain that is highly conserved among activators of sigma(54)-RNA polymerase. The C-domain mediates ATP hydrolysis and interaction with sigma(54)-RNA polymerase that are essential for open-complex formation and thus initiation of transcription. Wild-type and loss-of-function derivatives of DmpR, which are defective in distinct steps in nucleotide catalysis, were used to address the consequences of nucleotide binding and hydrolysis with respect to the multimeric state of DmpR and its ability to promote in vitro transcription. Here, we show that DmpR derivatives deleted of the regulatory N-terminal domain undergo an aromatic-effector independent ATP-binding triggered multimerisation as detected by cross-linking. In the intact protein, however, aromatic effector activation is required before ATP-binding can trigger an apparent dimer-to-hexamer switch in subunit conformation. The data suggest a model in which the N-terminal domain controls the transcriptional promoting property of DmpR by constraining ATP-mediated changes in its oligomeric state. The results are discussed in the light of recent mechanistic insights from the AAA(+) superfamily of ATPases that utilise nucleotide hydrolysis to restructure their substrates.

Place, publisher, year, edition, pages
2001. Vol. 314, no 5
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:umu:diva-112323DOI: 10.1006/jmbi.2000.5212PubMedID: 11743715OAI: oai:DiVA.org:umu-112323DiVA: diva2:877246
Available from: 2015-12-06 Created: 2015-12-06 Last updated: 2015-12-06

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Shingler, V
By organisation
Department of Molecular Biology (Faculty of Science and Technology)
In the same journal
Journal of Molecular Biology
Natural Sciences

Search outside of DiVA

GoogleGoogle ScholarTotal: 1 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 11 hits
ReferencesLink to record
Permanent link

Direct link