umu.sePublications
Change search
ReferencesLink to record
Permanent link

Direct link
Kinetics and Mechanisms of Ciprofloxacin Oxidation on Hematite Surfaces
Umeå University, Faculty of Science and Technology, Department of Chemistry. Rennes Cedex 7, France.
Umeå University, Faculty of Science and Technology, Department of Chemistry.
Rennes Cedex 7, France.
Umeå University, Faculty of Science and Technology, Department of Chemistry.
2015 (English)In: Environmental Science and Technology, ISSN 0013-936X, E-ISSN 1520-5851, Vol. 49, no 20, 12197-12205 p.Article in journal (Refereed) Published
Abstract [en]

Adsorption of antibiotics at mineral surfaces has been extensively studied over the past 20 years, yet much remains to be learned on their interfacial properties and transformation mechanisms. In this study, interactions of Ciprofloxacin (CIP), a fluoroquinolone antibiotic with two sets of synthetic nanosized hematite particles, with relatively smooth (H10, 10-20 nm in diameter) and roughened (H80, 80-90 nm in diameter) surfaces, were studied by means of liquid chromatography (LC), mass spectrometry (MS), and spectroscopy (vibration and X-ray photoelectron). Attenuated Total Reflectance Fourier Transform Infrared (ATR-FTIR) spectroscopy provides evidence for inner-sphere bidentate complex formation of CIP at hematite surfaces in 0.01 M NaCl, irrespective of pH and particle size. ATR-FTIR spectroscopy also revealed that the sorbed mother CIP molecule decayed to other surface species over a period of at least 65 h. This was supported by the detection of three daughter products in the aqueous phase by LC/MS. The appearance of NH3+ groups during the course of these experiments, revealed by cryogenic XPS, provides further evidence that CIP oxidation proceeds through an opening of piperazine ring via N-dealkylation. Additional in vacuo FTIR experiments under temperature-programmed desorption also showed that oxidation of sorbed byproducts were effectively degraded beyond 450 degrees C, a result denoting considerably strong (inter)molecular bonds of both mother and daughter products. This work also showed that rougher, possibly multidomainic particles (H80) generated slower rates of CIP decomposition but occurring through more complex schemes than at smoother particle surfaces (H10). This work thus uncovered key aspects of the binding of an important antibiotic at iron oxide surfaces, and therefore provided additional constraints to our growing understanding of the fate of emerging contaminants in the environment.

Place, publisher, year, edition, pages
2015. Vol. 49, no 20, 12197-12205 p.
National Category
Chemical Sciences
Identifiers
URN: urn:nbn:se:umu:diva-111480DOI: 10.1021/acs.est.5b02851ISI: 000363348700025PubMedID: 26419340OAI: oai:DiVA.org:umu-111480DiVA: diva2:877864
Available from: 2015-12-08 Created: 2015-11-13 Last updated: 2015-12-08Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Martin, SebastienShchukarev, AndreyBoily, Jean-Francois
By organisation
Department of Chemistry
In the same journal
Environmental Science and Technology
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 303 hits
ReferencesLink to record
Permanent link

Direct link