Change search
ReferencesLink to record
Permanent link

Direct link
Algebras of bounded holomorphic functions
Umeå University, Faculty of Science and Technology, Department of Mathematics Technology and Science Education.
1994 (English)Doctoral thesis, comprehensive summary (Other academic)Text
Abstract [en]

Some problems concerning the algebra of bounded holomorphic functions from bounded domains in Cn are solved. A bounded domain of holomorphy Q in C2 with nonschlicht i7°°- envelope of holomorphy is constructed and it is shown that there is a point in Q for which Gleason’s Problem for H°°(Q) cannot be solved.

If A(f2) is the Banach algebra of functions holomorphic in the bounded domain Q in Cn and continuous on the boundary and if p is a point in Q, then the following problem is known as Gleason’s Problem for A(Q) :

Is the maximal ideal in A(Q) consisting of functions vanishing at p generated by (Zl ~Pl) , ■■■ , (Zn - Pn) ?

A sufficient condition for solving Gleason’s Problem for A(Q) for all points in Q is given. In particular, this condition is fulfilled by a convex domain Q with Lipi+£-boundary (0 < e < 1) and thus generalizes a theorem of S.L.Leibenzon. One of the ideas in the methods of proof is integration along specific polygonal lines.

If Gleason’s Problem can be solved in a point it can be solved also in a neighbourhood of the point. It is shown, that the coefficients in this case depends holomorphically on the points.

Defining a projection from the spectrum of a uniform algebra of holomorphic functions to Cn, one defines the fiber in the spectrum over a point as the elements in the spectrum that projects on that point. Defining a kind of maximum modulus property for domains in Cn, some problems concerning the fibers and the number of elements in the fibers in certain algebras of bounded holomorphic functions are solved. It is, for example,

shown that the set of points, over which the fibers contain more than one element is closed. A consequence is also that a starshaped domain with the maximum modulus property has schlicht /y°°-envelope of holomorphy. These kind of problems are also connected with Gleason’s problem.

A survey paper on general properties of algebras of bounded holomorphic functions of several variables is included. The paper, in particular, treats aspects connecting iy°°-envelopes of holomorphy and some areas in the theory of uniform algebras.

Place, publisher, year, edition, pages
Umeå: Umeå universitet , 1994. , 3 p.
Doctoral thesis / Umeå University, Department of Mathematics, ISSN 1102-8300 ; 6
Keyword [en]
holomorphic function, bounded holomorphic function, domain of holomorphy, envelope of holomorphy, Gleason’s problem, convex set, uniform algebra, spectrum, fibers, generalized Shilov boundary, analytic structure, plurisubharmonic function
National Category
URN: urn:nbn:se:umu:diva-114744ISBN: 91-7174-856-3OAI: diva2:900093
Public defence
1994-02-07, Humanisthuset, Hörsal E, Umeå universitet, Umeå, 10:15

Diss. (sammanfattning) Umeå : Umeå universitet, 1994, härtill 6 uppsatser

Available from: 2016-02-05 Created: 2016-01-27 Last updated: 2016-02-05Bibliographically approved

Open Access in DiVA

Algebras of Bounded Holomorphic Functions(395 kB)46 downloads
File information
File name FULLTEXT01.pdfFile size 395 kBChecksum SHA-512
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Fällström, Anders
By organisation
Department of Mathematics Technology and Science Education

Search outside of DiVA

GoogleGoogle Scholar
Total: 46 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 67 hits
ReferencesLink to record
Permanent link

Direct link