Change search
ReferencesLink to record
Permanent link

Direct link
Proteomic Analysis of Microtubule Interacting Proteins over the Course of Xylem Tracheary Element Formation in Arabidopsis
Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC).
Show others and affiliations
2015 (English)In: The Plant Cell, ISSN 1040-4651, E-ISSN 1532-298X, Vol. 27, no 10, 2709-2726 p.Article in journal (Refereed) PublishedText
Abstract [en]

Plant vascular cells, or tracheary elements (TEs), rely on circumferential secondary cell wall thickenings to maintain sap flow. The patterns in which TE thickenings are organized vary according to the underlying microtubule bundles that guide wall deposition. To identify microtubule interacting proteins present at defined stages of TE differentiation, we exploited the synchronous differentiation of TEs in Arabidopsis thaliana suspension cultures. Quantitative proteomic analysis of microtubule pull-downs, using ratiometric N-14/N-15 labeling, revealed 605 proteins exhibiting differential accumulation during TE differentiation. Microtubule interacting proteins associated with membrane trafficking, protein synthesis, DNA/RNA binding, and signal transduction peaked during secondary cell wall formation, while proteins associated with stress peaked when approaching TE cell death. In particular, CELLULOSE SYNTHASE-INTERACTING PROTEIN1, already associated with primary wall synthesis, was enriched during secondary cell wall formation. RNAi knockdown of genes encoding several of the identified proteins showed that secondary wall formation depends on the coordinated presence of microtubule interacting proteins with nonoverlapping functions: cell wall thickness, cell wall homogeneity, and the pattern and cortical location of the wall are dependent on different proteins. Altogether, proteins linking microtubules to a range of metabolic compartments vary specifically during TE differentiation and regulate different aspects of wall patterning.

Place, publisher, year, edition, pages
2015. Vol. 27, no 10, 2709-2726 p.
National Category
URN: urn:nbn:se:umu:diva-116114DOI: 10.1105/tpc.15.00314ISI: 000368293600011PubMedID: 26432860OAI: diva2:901459
Available from: 2016-02-08 Created: 2016-02-08 Last updated: 2016-02-08Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Menard, DelphinePesquet, Edouard
By organisation
Umeå Plant Science Centre (UPSC)
In the same journal
The Plant Cell

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 22 hits
ReferencesLink to record
Permanent link

Direct link