umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Transient model of a panel radiator
Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.ORCID iD: 0000-0002-2822-0000
Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
2015 (English)In: Proceedings of BS2015: 14th Conference of International Building Performance Simulation Association, Hyderabad, India, Dec. 7-9, 2015, India, Hyderabad: International Building Performance Simulation Association (IBPSA), 2015, , 2749-2756 p.2749-2756 p.Conference paper, Published paper (Refereed)
Abstract [en]

This paper shows a transient model of a hydronic panel radiator modelled as a system of multiple storage elements. The experiment´s results suggest the more suitable technique for modelling this technology. The panel radiator is modelled numerically with eight thermal capacitance connected in series by keeping a memory of the heat injected in the thermal unit. The comparison of the performance among lumped steadystate models and transient model, in terms of heat emission and temperature of exhaust flow, shows the potential of the latter approach. To conclude, (1) the transient phase is essential for modelling stocky panels, and (2) this type of modelling has to be addressed for evaluating the performance of low energy buildings.

Place, publisher, year, edition, pages
India, Hyderabad: International Building Performance Simulation Association (IBPSA), 2015. , 2749-2756 p.2749-2756 p.
Keyword [en]
Transient model of panel radiator, EN 15316
National Category
Energy Engineering
Research subject
Technical Physics; English
Identifiers
URN: urn:nbn:se:umu:diva-116130OAI: oai:DiVA.org:umu-116130DiVA: diva2:901507
Conference
Proceedings of BS2015: 14th Conference of International Building Performance Simulation Association, Hyderabad, India, Dec. 7-9, 2015.
Available from: 2016-02-08 Created: 2016-02-08 Last updated: 2016-05-30Bibliographically approved
In thesis
1. Modelling and simulation of building components: thermal interaction between multilayer wall and hydronic radiator
Open this publication in new window or tab >>Modelling and simulation of building components: thermal interaction between multilayer wall and hydronic radiator
2016 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

Background and Scope The scope of this thesis is to investigate the thermal behaviour of building components as hydronic radiator and multilayer walls subjected to dynamic conditions. The modelling and simulation of these building components provide information on how these components thermally interact among each other. The thermal interaction is fundamental to know how the energy is used in buildings. In particular, the thermal energy used in rooms can be expressed as the efficiencies for emission in a space heating system. This thesis analyzes the efficiencies for emission of a space heating system equipped with hydronic radiator for Swedish buildings by providing a comprehensive and detailed approach on this topic.

 

Methodology The methods used in this thesis are: experiment, modelling of multilayer wall and hydronic radiator, the dynamic simulation of the building and the efficiencies for emission of a space heating system. Here, the experiment, known as step response test, shows the heating up process of a hydronic radiator. The observation of the qualitative measurements suggests the most suitable technique of modelling the radiator known as transient modelling with multiple storage elements. The multilayer wall has been discretized both in space and time variable with a Finite Difference Method. Dynamic simulation of the building provides the efficiencies for emission of a space heating system.

 

Findings The experimental results show how the radiator performs the charging phase. The performance of the transient model is compared with lumped steady state models in terms of temperature of exhaust flow and total heat emitted. Results of the dynamic simulation show how buildings located in a Northern climate use the energy in a better way than Southern climates in Sweden. Heavy active thermal mass provides higher efficiencies for emission than light thermal mass. Radiators with connection pipes located on the same side react faster at the thermodynamic changing of the mass flow rate by providing higher efficiencies for emission than radiators with connection pipes located on the opposite side.

 

Conclusion and Outlook This thesis increases the knowledge about the modelling and simulation of hydronic radiators and multilayer walls. More research is needed on this topic to encompass modelling details of building components often ignored. The modelling and simulation of building components are the key to understand how building components thermally interact with each other. The thermal interaction among building components is a fundamental parameter for the assessment of efficiencies of emission of the space heating system. In the near future, the concept of efficiencies of emission can be implemented in National Building Code, therefore, this study provides guidelines on how to assess these efficiencies.

Place, publisher, year, edition, pages
Umeå: Umeå University, 2016. 39 p.
Keyword
Hydronic radiator, multilayer wall, efficiencies of emission
National Category
Building Technologies
Research subject
Systems Analysis; Technical Physics
Identifiers
urn:nbn:se:umu:diva-121201 (URN)978-91-7601-515-5 (ISBN)
Presentation
2016-06-15, MC413, MIT-huset, Umeå University, Umeå, 13:00 (English)
Opponent
Supervisors
Note

Advisors: Ronny Östin and Mohsen Soleimanni Mohseni, Department of Applied Physics and Electronics, Umeå University

Available from: 2016-05-30 Created: 2016-05-30 Last updated: 2016-06-03Bibliographically approved

Open Access in DiVA

fulltext(1737 kB)103 downloads
File information
File name FULLTEXT01.pdfFile size 1737 kBChecksum SHA-512
8c51fda05cbb3759adbcac877578d512a8881f273572eeea78908be514af1523a3e481e24eda805ab95ba4d650c53280c4a1921549e55ff157a41450545be76e
Type fulltextMimetype application/pdf

Other links

URL

Search in DiVA

By author/editor
Brembilla, ChristianSoleimani-Mohseni, MohsenOlofsson, Thomas
By organisation
Department of Applied Physics and Electronics
Energy Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 103 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 564 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf