umu.sePublications
Change search
ReferencesLink to record
Permanent link

Direct link
Expression of fungal acetyl xylan esterase in Arabidopsis thaliana improves saccharification of stem lignocellulose
Show others and affiliations
2016 (English)In: Plant Biotechnology Journal, ISSN 1467-7644, E-ISSN 1467-7652, Vol. 14, no 1, 387-397 p.Article in journal (Refereed) PublishedText
Abstract [en]

Cell wall hemicelluloses and pectins are O-acetylated at specific positions, but the significance of these substitutions is poorly understood. Using a transgenic approach, we investigated how reducing the extent of O-acetylation in xylan affects cell wall chemistry, plant performance and the recalcitrance of lignocellulose to saccharification. The Aspergillus niger acetyl xylan esterase AnAXE1 was expressed in Arabidopsis under the control of either the constitutively expressed 35S CAMV promoter or a woody-tissue-specific GT43B aspen promoter, and the protein was targeted to the apoplast by its native signal peptide, resulting in elevated acetyl esterase activity in soluble and wall-bound protein extracts and reduced xylan acetylation. No significant alterations in cell wall composition were observed in the transgenic lines, but their xylans were more easily digested by a beta-1,4-endoxylanase, and more readily extracted by hot water, acids or alkali. Enzymatic saccharification of lignocellulose after hot water and alkali pretreatments produced up to 20% more reducing sugars in several lines. Fermentation by Trametes versicolor of tissue hydrolysates from the line with a 30% reduction in acetyl content yielded similar to 70% more ethanol compared with wild type. Plants expressing 35S: AnAXE1 and pGT43B:AnAXE1 developed normally and showed increased resistance to the biotrophic pathogen Hyaloperonospora arabidopsidis, probably due to constitutive activation of defence pathways. However, unintended changes in xyloglucan and pectin acetylation were only observed in 35S: AnAXE1-expressing plants. This study demonstrates that postsynthetic xylan deacetylation in woody tissues is a promising strategy for optimizing lignocellulosic biomass for biofuel production.

Place, publisher, year, edition, pages
2016. Vol. 14, no 1, 387-397 p.
Keyword [en]
acetyl xylan esterase, biofuels, saccharification, O-acetylation, glucuronoxylan, secondary cell wall
National Category
Botany
Identifiers
URN: urn:nbn:se:umu:diva-117407DOI: 10.1111/pbi.12393ISI: 000369285700038PubMedID: 25960248OAI: oai:DiVA.org:umu-117407DiVA: diva2:912450
Available from: 2016-03-16 Created: 2016-02-29 Last updated: 2016-03-16Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Sellstedt, Anita
By organisation
Department of Plant PhysiologyUmeå Plant Science Centre (UPSC)
In the same journal
Plant Biotechnology Journal
Botany

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 96 hits
ReferencesLink to record
Permanent link

Direct link