umu.sePublications
Change search
ReferencesLink to record
Permanent link

Direct link
Climate Change and Aedes Vectors: 21st Century Projections for Dengue Transmission in Europe
Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Epidemiology and Global Health.
Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Epidemiology and Global Health.
Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Epidemiology and Global Health. Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore.
Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
Show others and affiliations
(English)Article in journal (Refereed) Submitted
Abstract [en]

Warming temperatures may increase the geographic spread of vector-borne diseases into temperate areas. Although a tropical mosquito-borne viral disease, a dengue outbreak occurred in Madeira, Portugal, in 2012; the first in Europe since 1920s. This outbreak emphasizes the potential for dengue re-emergence in Europe given changing climates. We present estimates of dengue epidemic potential using vectorial capacity (VC) based on historic and projected temperature (1901 - 2099). VC indicates the vectors’ ability to spread disease among humans. We calculated temperature-dependent VC for Europe, highlighting 10 European cities and three non-European reference cities. Compared with the tropics, Europe shows pronounced seasonality and geographical heterogeneity. Although low, VC during summer is currently sufficient for dengue outbreaks in Southern Europe to commence–if sufficient vector populations (either Ae. aegypti and Ae. albopictus) were active and virus were introduced. Under various climate change scenarios, the seasonal peak and time window for dengue epidemic potential increases during the 21st century. Our study maps dengue epidemic potential in Europe and identifies seasonal time windows when major cities are most conducive for dengue transmission from 1901-2099. Our findings illustrate, that besides vector control, mitigating greenhouse gas emissions crucially reduces the future epidemic potential of dengue in Europe.

Keyword [en]
Vectorial Capacity Aedes aegyptus Aedes albopictus Temperature Climate Change
National Category
Public Health, Global Health, Social Medicine and Epidemiology
Identifiers
URN: urn:nbn:se:umu:diva-118643OAI: oai:DiVA.org:umu-118643DiVA: diva2:914935
Funder
EU, FP7, Seventh Framework Programme, 282589
Note

This study is part of the DengueTools project funded by the European Union Seventh Framework Programme FP7/2007-2013 under grant agreement no. 282589.

Available from: 2016-03-28 Created: 2016-03-28 Last updated: 2016-04-04Bibliographically approved
In thesis
1. Imported infections’ importance: global change driving Dengue dynamics
Open this publication in new window or tab >>Imported infections’ importance: global change driving Dengue dynamics
2016 (English)Doctoral thesis, comprehensive summary (Other academic)
Alternative title[sv]
Vikten av importerade infektioner : kan globala förändringar förklara Dengue utbrott?
Abstract [en]

Background Dengue is a significant problem of international health concern. According to the World Health Organization in 2012, globally, dengue is “the most important mosquito borne viral disease” with incidence 30 higher than it had been 50 years ago. While most of the burden of disease associated with dengue is located in areas with a tropical and sub-tropical climate, increasing evidence suggests temperate areas are also at risk. Considering the recent introduction of relevant mosquito vectors into Southern Europe, and increasing numbers of imported dengue via travelers, Europe and other temperate areas may be increasingly at risk for dengue emergence, establishment and local transmission in the foreseeable future.

Methods Recent dengue emergence in Madeira and reemergence in Tokyo underline the hypothesis that passenger air-travel can be an important conduit for the importation of vector-borne disease leading to emergence in naïve areas climatically suitable for dengue transmission, including parts of Europe. Combining information on travel with virus genetic similarity was useful in discerning likely pathways of for the importation of infections. Generalizing information learned from outbreaks in Tokyo and Madeira with global epidemic intelligence, global travel networks, and climate change projections, leads to more refined understanding of the magnitude of dengue infectious imported into temperate areas and these virus introduction events’ potential implications for seeding epidemics in the 21st century.

Results While compared to total travel, imported dengue events and epidemics of dengue outside the tropics are rare, our combined evidence and modeled estimations suggest strongly that epidemic dengue emergence in temperate areas is possible and will continue to increase. We found that global change dynamics including warming temperatures in the much of the northern hemisphere and increasing passenger interconnectivity between areas endemic for dengue and dengue free areas are key mechanisms partly explaining these unprecedented epidemiological transitions.

Conclusion While we calibrated our models on information known about dengue, many elements of the methods and conclusions may increase understanding of the potentially global implications for imported infections of other climate-sensitive infectious diseases’ that may have similar parameters. During 2016 and the years to come, techniques developed in this doctoral research will contribute to models used in risk analysis for vector-borne diseases of interest, including the increasing important potential for imported Chikungunya and Zika viruses into a variety of unexposed areas. 

Place, publisher, year, edition, pages
Umeå: Umeå University, 2016. 99 p.
Series
Umeå University medical dissertations, ISSN 0346-6612 ; 1793
Keyword
Dengue, Zika, Vector-borne Disease, Aedes, Global Change, Climate Change, Viral Evolution, Phylogenetics, Travel, Interconnectivity, Disease Modeling, Madeira, Italy, Japan, Europe
National Category
Public Health, Global Health, Social Medicine and Epidemiology
Identifiers
urn:nbn:se:umu:diva-118645 (URN)978-91-7601-443-1 (ISBN)
Public defence
2016-04-22, Room 135, Building 9A, Northlands University Hospital (sal 135, byggnad 9A, Norrlands Universitetssjukhus), Umeå, Sweden, 13:00 (English)
Opponent
Supervisors
Funder
EU, FP7, Seventh Framework Programme, 282589
Available from: 2016-03-31 Created: 2016-03-28 Last updated: 2016-04-20Bibliographically approved

Open Access in DiVA

No full text

Search in DiVA

By author/editor
Liu-Helmersson, JingQuam, MikkelWilder-Smith, AnneliesStenlund, HansRocklöv, Joacim
By organisation
Epidemiology and Global HealthDepartment of Molecular Biology (Faculty of Medicine)
Public Health, Global Health, Social Medicine and Epidemiology

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 171 hits
ReferencesLink to record
Permanent link

Direct link