umu.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Porous Graphene Oxide/Diboronic Acid Materials: Structure and Hydrogen Sorption
Umeå University, Faculty of Science and Technology, Department of Physics.
Umeå University, Faculty of Science and Technology, Department of Physics.
Umeå University, Faculty of Science and Technology, Department of Chemistry.
Umeå University, Faculty of Science and Technology, Department of Chemistry.
Show others and affiliations
2015 (English)In: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 119, no 49, p. 27179-27191Article in journal (Refereed) Published
Resource type
Text
Abstract [en]

Solvothermal reaction of graphite oxide (GO) with benzene-1,4-diboronic acid (DBA) was reported previously to result in formation of graphene oxide framework (GOP) materials. The theoretical structure of GOFs consists of graphene layers separated by benzene-diboronic "pillars" with similar to 1 nm slit pores thus providing the opportunity to use it as a model material to verify the effect of a small pore size on hydrogen adsorption. A set of samples with specific surface area (SSA) in the range of similar to 50-1000 m(2)/g were prepared using variations of synthesis conditions and GO/DBA proportions. Hydrogen storage properties of GOF samples evaluated at 293 and 77 K were found to be similar to other nanocarbon trends in relation to SSA values. Structural characterization of GO/DBA samples showed all typical features reported as evidence for formation of a framework structure such as expanded interlayer distance, increased temperature of thermal exfoliation, typical features in FTIR spectra, etc. However, the samples also exhibited reversible swelling in polar solvents which is not compatible with the idealized GOF structure linked by benzenediboronic molecular pillars. Therefore, possible alternative nonframework models of structures with pillars parallel and perpendicular to GO planes are considered.

Place, publisher, year, edition, pages
2015. Vol. 119, no 49, p. 27179-27191
National Category
Materials Chemistry
Identifiers
URN: urn:nbn:se:umu:diva-113842DOI: 10.1021/acs.jpcc.5b06402ISI: 000366339000001OAI: oai:DiVA.org:umu-113842DiVA, id: diva2:915610
Funder
Swedish Research Council, 621-2012-3654Available from: 2016-03-30 Created: 2016-01-04 Last updated: 2018-06-07Bibliographically approved
In thesis
1. Graphite oxides for preparation of graphene related materials: structure, chemical modification and hydrogen storage properties
Open this publication in new window or tab >>Graphite oxides for preparation of graphene related materials: structure, chemical modification and hydrogen storage properties
2018 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Carbon materials have been studied for hydrogen storage for decades, but they showed too low capacity at ambient temperature compared to target values for practical applications. This thesis includes two parts. First one is fundamental study of graphite oxides (GO) structure and properties. Second part is focused on hydrogen storage properties of graphene related materials prepared using GO as a precursor.

We studied the effects of synthesis methods and oxidation degree on solvation/intercalation properties of GOs. New effect of temperature induced reversible delamination was observed for Hummers GO (HGO) immersed in liquid acetonitrile. Experiments with swelling of Brodie GO (BGO) in 1-octanol revealed parallel orientation of the intercalated solvent molecules relative to graphene oxide (GnO) layers. Chemical functionalization of GO in swelled state allowed us to synthesize the materials with subnanometer slit pores supported by molecular pillars. Structure and properties of pillared GO were characterized by variety of methods. Swelling properties of multilayered GnO membranes were compared to properties of precursor GO. GnO membranes were found to swell similarly to GO powders in some solvents and rather differently in other. Our experiments revealed important limitations in application of GO membranes for nanofiltration. Several parameters were found to affect the size of permeation “channels” provided by interlayers of GnO membrane structure: e.g. nature of solvent, pH of solutions and concentration of solutes.

Hydrogen storage parameters were studied for a set of graphene related materials with broad range of surface areas (SSA) (200 - 3300 m2/g). Hydrogen sorption weight percent (wt%) is found to correlate with SSA for all studied graphene materials following the trend standard for other nanostructured carbon materials. The highest hydrogen uptakes of ~1.2 wt% at 296 K and ~7.5 wt% at 77 K were measured for graphene material with SSA of over 3000 m2/g. Addition of Pd and Pt nanoparticles to graphene materials did not resulted in improvement of hydrogen storage compared to nanoparticles-free samples. No deviation from the standard wt% vs. SSA trends was also observed for pillared GO materials. Therefore, hydrogen storage properties of graphene related materials at room temperatures are not confirmed to be exceptional. However, high surface area graphene materials are found to be among the best materials for physisorption of hydrogen at liquid nitrogen temperature. Moreover, hydrogen storage capacity of 4 wt%, comparable to target values, was observed at temperature of solid CO2 (193 K) which can be maintained using common refrigeration methods.

Place, publisher, year, edition, pages
Umeå: Umeå University, 2018. p. 117
Keywords
Graphite oxide, graphene oxide, hydrogen storage, nanomaterials, adsorption, surface area, pore volume
National Category
Other Physics Topics
Research subject
Materials Science
Identifiers
urn:nbn:se:umu:diva-144270 (URN)978-91-7601-841-5 (ISBN)
Public defence
2018-03-02, N430, Naturvetarhuset, Umeå, 13:15 (English)
Opponent
Supervisors
Available from: 2018-02-09 Created: 2018-01-29 Last updated: 2018-06-09Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records BETA

Mercier, GuillaumeKlechikov, AlexeyHedenstrom, MattiasJohnels, DanTalyzin, Alexandr V.

Search in DiVA

By author/editor
Mercier, GuillaumeKlechikov, AlexeyHedenstrom, MattiasJohnels, DanTalyzin, Alexandr V.
By organisation
Department of PhysicsDepartment of Chemistry
In the same journal
The Journal of Physical Chemistry C
Materials Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 122 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf