umu.sePublications
Change search
ReferencesLink to record
Permanent link

Direct link
Protein dynamics and function from solution state NMR spectroscopy
Umeå University, Faculty of Science and Technology, Department of Chemistry.
Umeå University, Faculty of Science and Technology, Department of Chemistry.
Umeå University, Faculty of Science and Technology, Department of Chemistry.
2016 (English)In: Quarterly reviews of biophysics (Print), ISSN 0033-5835, E-ISSN 1469-8994, Vol. 49, e6Article, review/survey (Refereed) Published
Abstract [en]

It is well-established that dynamics are central to protein function; their importance is implicitly acknowledged in the principles of the Monod, Wyman and Changeux model of binding cooperativity, which was originally proposed in 1965. Nowadays the concept of protein dynamics is formulated in terms of the energy landscape theory, which can be used to understand protein folding and conformational changes in proteins. Because protein dynamics are so important, a key to understanding protein function at the molecular level is to design experiments that allow their quantitative analysis. Nuclear magnetic resonance (NMR) spectroscopy is uniquely suited for this purpose because major advances in theory, hardware, and experimental methods have made it possible to characterize protein dynamics at an unprecedented level of detail. Unique features of NMR include the ability to quantify dynamics (i) under equilibrium conditions without external perturbations, (ii) using many probes simultaneously, and (iii) over large time intervals. Here we review NMR techniques for quantifying protein dynamics on fast (ps-ns), slow (μs-ms), and very slow (s-min) time scales. These techniques are discussed with reference to some major discoveries in protein science that have been made possible by NMR spectroscopy.

Place, publisher, year, edition, pages
Cambridge University Press, 2016. Vol. 49, e6
National Category
Chemical Sciences Biophysics
Identifiers
URN: urn:nbn:se:umu:diva-119440DOI: 10.1017/S0033583516000019ISI: 000375229500001PubMedID: 27088887OAI: oai:DiVA.org:umu-119440DiVA: diva2:920844
Available from: 2016-04-19 Created: 2016-04-19 Last updated: 2016-06-21Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Kovermann, MichaelRogne, PerWolf-Watz, Magnus
By organisation
Department of Chemistry
In the same journal
Quarterly reviews of biophysics (Print)
Chemical SciencesBiophysics

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 69 hits
ReferencesLink to record
Permanent link

Direct link