umu.sePublications
Change search
ReferencesLink to record
Permanent link

Direct link
Convergence in the temperature response of leaf respiration across biomes and plant functional types
Show others and affiliations
2016 (English)In: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, Vol. 113, no 14, 3832-3837 p.Article in journal (Refereed) PublishedText
Abstract [en]

Plant respiration constitutes a massive carbon flux to the atmosphere, and a major control on the evolution of the global carbon cycle. It therefore has the potential to modulate levels of climate change due to the human burning of fossil fuels. Neither current physiological nor terrestrial biosphere models adequately describe its short-term temperature response, and even minor differences in the shape of the response curve can significantly impact estimates of ecosystem carbon release and/or storage. Given this, it is critical to establish whether there are predictable patterns in the shape of the respiration-temperature response curve, and thus in the intrinsic temperature sensitivity of respiration across the globe. Analyzing measurements in a comprehensive database for 231 species spanning 7 biomes, we demonstrate that temperature-dependent increases in leaf respiration do not follow a commonly used exponential function. Instead, we find a decelerating function as leaves warm, reflecting a declining sensitivity to higher temperatures that is remarkably uniform across all biomes and plant functional types. Such convergence in the temperature sensitivity of leaf respiration suggests that there are universally applicable controls on the temperature response of plant energy metabolism, such that a single new function can predict the temperature dependence of leaf respiration for global vegetation. This simple function enables straightforward description of plant respiration in the land-surface components of coupled earth system models. Our cross-biome analyses shows significant implications for such fluxes in cold climates, generally projecting lower values compared with previous estimates.

Place, publisher, year, edition, pages
National Academy of Sciences , 2016. Vol. 113, no 14, 3832-3837 p.
Keyword [en]
temperature sensitivity, climate models, carbon exchange, Q(10), thermal response
National Category
Climate Research Ecology
Identifiers
URN: urn:nbn:se:umu:diva-119630DOI: 10.1073/pnas.1520282113ISI: 000373354000049OAI: oai:DiVA.org:umu-119630DiVA: diva2:929969
Available from: 2016-05-20 Created: 2016-04-25 Last updated: 2016-05-20Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Stangl, Zsofia R.
By organisation
Department of Plant PhysiologyUmeå Plant Science Centre (UPSC)
In the same journal
Proceedings of the National Academy of Sciences of the United States of America
Climate ResearchEcology

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 11 hits
ReferencesLink to record
Permanent link

Direct link