umu.sePublications
Change search
ReferencesLink to record
Permanent link

Direct link
Modeling the Electrostatic Potential of Asymmetric Lipopolysaccharide Membranes
2014 (English)In: Journal of Computational Chemistry, ISSN 0192-8651, E-ISSN 1096-987X, Vol. 35, no 19, 1418-1429 p.Article in journal (Refereed) Published
Abstract [en]

Four chemotypes of the rough lipopolysaccharides (LPS) membrane from Pseudomonas aeruginosa were investigated by a combined approach of explicit water molecular dynamics (MD) simulations and Poisson–Boltzmann continuum electrostatics with the goal to deliver the distribution of the electrostatic potential across the membrane. For the purpose of this investigation, a new tool for modeling the electrostatic potential profile along the axis normal to the membrane, MEMbrane POTential (MEMPOT), was developed and implemented in DelPhi. Applying MEMPOT on the snapshots obtained by MD simulations, two observations were made: (a) the average electrostatic potential has a complex profile but is mostly positive inside the membrane due to the presence of Ca2+ ions, which overcompensate for the negative potential created by lipid phosphate groups; and (b) correct modeling of the electrostatic potential profile across the membrane requires taking into account the water phase, while neglecting it (vacuum calculations) results in dramatic changes including a reversal of the sign of the potential inside the membrane. Furthermore, using DelPhi to assign different dielectric constants for different regions of the LPS membranes, it was investigated whether a single frame structure before MD simulations with appropriate dielectric constants for the lipid tails, inner, and the external leaflet regions, can deliver the same average electrostatic potential distribution as obtained from the MD-generated ensemble of structures. Indeed, this can be attained by using smaller dielectric constant for the tail and inner leaflet regions (mostly hydrophobic) than for the external leaflet region (hydrophilic) and the optimal dielectric constant values are chemotype-specific.

Place, publisher, year, edition, pages
Wiley Periodicals , 2014. Vol. 35, no 19, 1418-1429 p.
Keyword [en]
Poisson-Boltzmann equation; glycolipids; lipopolysaccharides phenotype variation; multiple dielectric constants; outer membrane remodeling; phospholipid bilayers; transmembrane potential
National Category
Chemical Sciences
Identifiers
URN: urn:nbn:se:umu:diva-121297DOI: 10.1002/jcc.23632PubMedID: 24799021OAI: oai:DiVA.org:umu-121297DiVA: diva2:931902
Funder
Swedish National Infrastructure for Computing (SNIC)
Available from: 2016-05-31 Created: 2016-05-31 Last updated: 2016-06-29

Open Access in DiVA

No full text

Other links

Publisher's full textPubMedhttp://doi.wiley.com/10.1002/jcc.v35.19http://doi.wiley.com/10.1002/jcc.23632

Search in DiVA

By author/editor
Soares, Tereza A
In the same journal
Journal of Computational Chemistry
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 6 hits
ReferencesLink to record
Permanent link

Direct link