umu.sePublications
Change search
ReferencesLink to record
Permanent link

Direct link
Structure of a prereaction complex between the nerve agent sarin, its biological target acetylcholinesterase, and the antidote HI-6
Umeå University, Faculty of Science and Technology, Department of Chemistry.
Show others and affiliations
2016 (English)In: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, Vol. 113, no 20, 5514-5519 p.Article in journal (Refereed) PublishedText
Abstract [en]

Organophosphorus nerve agents interfere with cholinergic signaling by covalently binding to the active site of the enzyme acetylcholinesterase (AChE). This inhibition causes an accumulation of the neurotransmitter acetylcholine, potentially leading to overstimulation of the nervous system and death. Current treatments include the use of antidotes that promote the release of functional AChE by an unknown reactivation mechanism. We have used diffusion trap cryocrystallography and density functional theory (DFT) calculations to determine and analyze prereaction conformers of the nerve agent antidote HI-6 in complex with Mus musculus AChE covalently inhibited by the nerve agent sarin. These analyses reveal previously unknown conformations of the system and suggest that the cleavage of the covalent enzyme-sarin bond is preceded by a conformational change in the sarin adduct itself. Together with data from the reactivation kinetics, this alternate conformation suggests a key interaction between Glu202 and the O-isopropyl moiety of sarin. Moreover, solvent kinetic isotope effect experiments using deuterium oxide reveal that the reactivation mechanism features an isotope-sensitive step. These findings provide insights into the reactivation mechanism and provide a starting point for the development of improved antidotes. The work also illustrates how DFT calculations can guide the interpretation, analysis, and validation of crystallographic data for challenging reactive systems with complex conformational dynamics.

Place, publisher, year, edition, pages
2016. Vol. 113, no 20, 5514-5519 p.
Keyword [en]
acetylcholinesterase, density functional theory, crystallography, nerve agent, reactivation
National Category
Chemical Sciences
Identifiers
URN: urn:nbn:se:umu:diva-121442DOI: 10.1073/pnas.1523362113ISI: 000375977600028PubMedID: 27140636OAI: oai:DiVA.org:umu-121442DiVA: diva2:942222
Available from: 2016-06-23 Created: 2016-06-02 Last updated: 2016-06-23Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Berg, LottaLinusson, Anna
By organisation
Department of Chemistry
In the same journal
Proceedings of the National Academy of Sciences of the United States of America
Chemical Sciences

Search outside of DiVA

GoogleGoogle Scholar
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Altmetric score

Total: 81 hits
ReferencesLink to record
Permanent link

Direct link