Change search
ReferencesLink to record
Permanent link

Direct link
Stokes' Theorem on Smooth Manifolds
Umeå University, Faculty of Science and Technology, Department of Mathematics and Mathematical Statistics.
2016 (English)Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesis
Abstract [en]

A proof of Stokes' theorem on smooth manifolds is given, complete with prerequisite results in tensor algebra and differential geometry. The essay assumes familiarity with multi-variable calculus and linear algebra, as well as a basic understanding of point-set topology. Stokes' theorem is then applied to the conservation of energy-momentum in general relativity under the existence of so called Killing vectors.

Abstract [sv]

Stokes sats för släta mångfalder bevisas, komplett med nödvändiga resultat från tensoralgebran och differentialgeometrin. Uppsatsen förutsätter förtrogenhet med flervariabelanalys och linjär algebra, samt en grundläggande förståelse för allmän topologi. Stokes sats appliceras sedan till bevarande av energi-momentum i allmän relativitetsteori under existensen av so kallade Killingvektorer.

Place, publisher, year, edition, pages
National Category
URN: urn:nbn:se:umu:diva-125404OAI: diva2:967850
Educational program
Bachelor of Science in Physics and Applied Mathematics
Available from: 2016-09-14 Created: 2016-09-09 Last updated: 2016-09-14Bibliographically approved

Open Access in DiVA

fulltext(1206 kB)20 downloads
File information
File name FULLTEXT01.pdfFile size 1206 kBChecksum SHA-512
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Jörgenfelt, Erik
By organisation
Department of Mathematics and Mathematical Statistics

Search outside of DiVA

GoogleGoogle Scholar
Total: 20 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

Total: 42 hits
ReferencesLink to record
Permanent link

Direct link