umu.sePublications

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_upper_j_idt144",{id:"formSmash:upper:j_idt144",widgetVar:"widget_formSmash_upper_j_idt144",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:upper:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_upper_j_idt145_j_idt147",{id:"formSmash:upper:j_idt145:j_idt147",widgetVar:"widget_formSmash_upper_j_idt145_j_idt147",target:"formSmash:upper:j_idt145:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});

The Zero Forcing Number of Bijection GraphsPrimeFaces.cw("AccordionPanel","widget_formSmash_some",{id:"formSmash:some",widgetVar:"widget_formSmash_some",multiple:true}); PrimeFaces.cw("AccordionPanel","widget_formSmash_all",{id:"formSmash:all",widgetVar:"widget_formSmash_all",multiple:true});
function selectAll()
{
var panelSome = $(PrimeFaces.escapeClientId("formSmash:some"));
var panelAll = $(PrimeFaces.escapeClientId("formSmash:all"));
panelAll.toggle();
toggleList(panelSome.get(0).childNodes, panelAll);
toggleList(panelAll.get(0).childNodes, panelAll);
}
/*Toggling the list of authorPanel nodes according to the toggling of the closeable second panel */
function toggleList(childList, panel)
{
var panelWasOpen = (panel.get(0).style.display == 'none');
// console.log('panel was open ' + panelWasOpen);
for (var c = 0; c < childList.length; c++) {
if (childList[c].classList.contains('authorPanel')) {
clickNode(panelWasOpen, childList[c]);
}
}
}
/*nodes have styleClass ui-corner-top if they are expanded and ui-corner-all if they are collapsed */
function clickNode(collapse, child)
{
if (collapse && child.classList.contains('ui-corner-top')) {
// console.log('collapse');
child.click();
}
if (!collapse && child.classList.contains('ui-corner-all')) {
// console.log('expand');
child.click();
}
}
2015 (English)In: Proceedings of 26th International Workshop om Combinatorial Algorithms (IWOCA 2015), Berlin-Heidelberg: Springer, 2015, Vol. 9538, p. 334-345Conference paper, Published paper (Refereed)
##### Abstract [en]

##### Place, publisher, year, edition, pages

Berlin-Heidelberg: Springer, 2015. Vol. 9538, p. 334-345
##### Series

Lecture Notes in Computer Science ; 9538
##### Keywords [en]

Zero forcing set, Zero forcing number, Bijection graph
##### National Category

Discrete Mathematics
##### Identifiers

URN: urn:nbn:se:umu:diva-125915DOI: 10.1007/978-3-319-29516-9_28ISBN: 978-3-319-29515-2 (print)ISBN: 978-3-319-29516-9 (electronic)OAI: oai:DiVA.org:umu-125915DiVA, id: diva2:972702
##### Conference

26th International Workshop om Combinatorial Algorithms (IWOCA 2015), Verona, Italy, October 5-7, 2015
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt434",{id:"formSmash:j_idt434",widgetVar:"widget_formSmash_j_idt434",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt440",{id:"formSmash:j_idt440",widgetVar:"widget_formSmash_j_idt440",multiple:true});
#####

PrimeFaces.cw("AccordionPanel","widget_formSmash_j_idt446",{id:"formSmash:j_idt446",widgetVar:"widget_formSmash_j_idt446",multiple:true}); Available from: 2016-09-22 Created: 2016-09-22 Last updated: 2019-06-26Bibliographically approved
##### In thesis

The zero forcing number of a graph is a graph parameter based on a color change process, which starts with a state, where all vertices are colored either black or white. In the next step a white vertex turns black, if it is the only white neighbor of some black vertex, and this step is then iterated. The zero forcing number *Z*(*G*) is defined as the minimum cardinality of a set *S* of black vertices such that the whole vertex set turns black.

In this paper we study *Z*(*G*) for the class of bijection graphs, where a bijection graph is a graph on 2*n* vertices that can be partitioned into two parts with *n* vertices each, joined by a perfect matching. For this class of graphs we show an upper bound for the zero forcing number and classify the graphs that attain this bound. We improve the general lower bound for the zero forcing number, which is Z(G)≥δ(G)" role="presentation" style="box-sizing: border-box; display: inline-table; line-height: normal; letter-spacing: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; padding: 0px; margin: 0px; position: relative;">Z(G)≥δ(G)Z(G)≥δ(G), for certain bijection graphs and use this improved bound to find the exact value of the zero forcing number for these graphs. This extends and strengthens results of Yi (2012) about the more restricted class of so called permutation graphs.

1. Enumerative approaches and structural results for selected combinatorial problems$(function(){PrimeFaces.cw("OverlayPanel","overlay1317629",{id:"formSmash:j_idt720:0:j_idt724",widgetVar:"overlay1317629",target:"formSmash:j_idt720:0:parentLink",showEvent:"mousedown",hideEvent:"mousedown",showEffect:"blind",hideEffect:"fade",appendToBody:true});});

doi
isbn
urn-nbn$(function(){PrimeFaces.cw("Tooltip","widget_formSmash_j_idt1156",{id:"formSmash:j_idt1156",widgetVar:"widget_formSmash_j_idt1156",showEffect:"fade",hideEffect:"fade",showDelay:500,hideDelay:300,target:"formSmash:altmetricDiv"});});

CiteExport$(function(){PrimeFaces.cw("TieredMenu","widget_formSmash_lower_j_idt1209",{id:"formSmash:lower:j_idt1209",widgetVar:"widget_formSmash_lower_j_idt1209",autoDisplay:true,overlay:true,my:"left top",at:"left bottom",trigger:"formSmash:lower:exportLink",triggerEvent:"click"});}); $(function(){PrimeFaces.cw("OverlayPanel","widget_formSmash_lower_j_idt1210_j_idt1212",{id:"formSmash:lower:j_idt1210:j_idt1212",widgetVar:"widget_formSmash_lower_j_idt1210_j_idt1212",target:"formSmash:lower:j_idt1210:permLink",showEffect:"blind",hideEffect:"fade",my:"right top",at:"right bottom",showCloseIcon:true});});