Umeå University's logo

umu.sePublications
Change search
Refine search result
1234567 1 - 50 of 3028
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Abd Alrahman, Chadi
    et al.
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Khodabakhsh, Amir
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Schmidt, Florian M.
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Qu, Zhechao
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Foltynowicz, Aleksandra
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Cavity-enhanced optical frequency comb spectroscopy of high-temperature H2O in a flame2014In: Optics Express, E-ISSN 1094-4087, Vol. 22, no 11, p. 13889-13895Article in journal (Refereed)
    Abstract [en]

    We demonstrate near-infrared cavity-enhanced optical frequency comb spectroscopy of water in a premixed methane/air flat flame. The detection system is based on an Er:fiber femtosecond laser, a high finesse optical cavity containing the flame, and a fast-scanning Fourier transform spectrometer (FTS). High absorption sensitivity is obtained by the combination of a high-bandwidth two-point comb-cavity lock and auto-balanced detection in the FTS. The system allows recording high-temperature water absorption spectra with a resolution of 1 GHz and a bandwidth of 50 nm in an acquisition time of 0.4 s, with absorption sensitivity of 4.2 x 10 (9) cm(-1) Hz(-1/2) per spectral element.

  • 2. Abdelsalam, UM
    et al.
    Moslem, WM
    Shukla, Padma Kant
    Umeå University, Faculty of Science and Technology, Department of Physics. Institut für Theoretische Physik IV, Fakultät für Physik und Astronomie, Ruhr-Universität Bochum, D-44780 Bochum, Germany; Nonlinear Physics Centre & Center for Plasma Science and Astrophysics, Ruhr-Universität Bochum, D-44780 Bochum, Germany; Max-Planck-Institut für extraterrestrische Physik, D-85741 Garching, Germany; GoLP/Instituto Superior Técnico, 1049-001 Lisbon, Portugal; CCLRC Centre for Fundamental Physics, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon 0X11 0QX, UK; SUPA Department of Physics, University of Strathclyde, Glasgow G 40NG, UK; School of Physics, Faculty of Science & Agriculture, University of Kwazulu-Natal, Durban 4000, South Africa; Department of Physics, CITT, Islamabad, Pakistan.
    Ion-acoustic solitary waves in a dense pair-ion plasma containing degenerate electrons and positrons2008In: Physics Letters A, ISSN 0375-9601, E-ISSN 1873-2429, Vol. 372, no 22, p. 4057-4061Article in journal (Refereed)
    Abstract [en]

    Fully nonlinear propagation of ion-acoustic solitary waves in a collisionless dense/quantum electron-positron-ion plasma is investigated. The electrons and positrons are assumed to follow the Thomas-Fermi density distribution and the ions are described by the hydrodynamic equations. An energy balance-like equation involving a Sagdeev-type pseudo-potential is derived. Finite amplitude solutions are obtained numerically and their characteristics are discussed. The small-but finite-amplitude limit is also considered and an exact analytical solution is obtained. The present studies might be helpful to understand the excitation of nonlinear ion-acoustic solitary waves in a degenerate plasma such as in superdense white dwarfs.

  • 3. Abdelsalam, UM
    et al.
    Moslem, WM
    Shukla, Padma Kant
    Umeå University, Faculty of Science and Technology, Department of Physics. Institut für Theoretische Physik IV, Fakultät für Physik und Astronomie, Ruhr-Universität Bochum, D-44780 Bochum, Germany; Nonlinear Physics Centre & Center for Plasma Science and Astrophysics, Ruhr-Universität Bochum, D-44780 Bochum, Germany; Max-Planck-Institut für Extraterrestrische Physik, D-85741 Garching, Germany; GoLP/Instituto Superior Técnico, 1049-001 Lisbon, Portugal; CCLRC Centre for Fundamental Physics, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon 0X11 0QX, UK; SUPA Department of Physics, University of Strathclyde, Glasgow G 40NG, UK; School of Physics, Faculty of Science & Agriculture, University of Kwazulu-Natal, Durban 4000, South Africa; Department of Physics, CITT, Islamabad, Pakistan.
    Localized electrostatic excitations in a Thomas-Fermi plasma containing degenerate electrons2008In: Physics of Plasmas, ISSN 1070-664X, E-ISSN 1089-7674, Vol. 15, no 5, article id 052303Article in journal (Refereed)
    Abstract [en]

    By using the Thomas-Fermi electron density distribution for quantum degenerate electrons, the hydrodynamic equations for ions, and the Poisson equation, planar and nonplanar ion-acoustic solitary waves in an unmagnetized collisionless plasma are investigated. The reductive perturbation method is used to derive cylindrical and spherical Korteweg-de Vries equations. Numerical solutions of the latter are presented. The present results can be useful in understanding the features of small but finite amplitude localized ion-acoustic solitary pulses in a degenerate plasma.

  • 4.
    Abdollahi, Elham
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Development of breath sampling system for detection of exhaled nitric oxide by Faraday modulation spectroscopy2013Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    Technological developments over the years have resulted in many different techniques for detection of nitric oxide (NO) in both the atmosphere and from biological sources. One such technique is Faraday Modulation Spectroscopy (FAMOS), which is a laser-based spectroscopic technique for detection of paramagnetic molecules in gas phase. The technique uses a modulated magnetic field that introduce rotation of the polarization plane of linearly polarized laser light, which can be related to the concentration of the molecules. This enables sensitive and selective detection of paramagnetic gaseous compounds and the technique is thus well suited for detection of NO for biomedical applications in low concentrations which is essential for breath analysis.

    In this thesis, a system for breath analysis is developed and coupled to a Faraday modulation spectrometer for sensitive detection of NO at 5.33 μm based on a room temperature continuous wave distributed feedback (DFB) QCL. It also provides a theoretical model of FAMOS utilizing the most sensitive Q3/2 (3/2 ) transition in NO. The results from this study indicate that the mid-infrared FAMOS system, which was built around a continuous wave (cw) quantum cascade laser (QCL) emitting light with an output power of approximately 70 mW, is fully capable of detection of ppb levels of NO in exhaled human breath.

  • 5.
    Abdollahi, Elham
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Realization of an instrumentation for detection of acetylene in breath by the NICE-OHMS technique2014Independent thesis Advanced level (degree of Master (Two Years)), 10 credits / 15 HE creditsStudent thesis
    Abstract [en]

    Measurement is an important activity in nearly all branches of science and technology. A measurement technique provides an observer with a numerical value corresponding to the variable being measured. Researchers envision that laser spectroscopy will serve as a functional tool for measurement to detect molecules in gas phase. One such a laser spectroscopic technique for measurement is noise-immune cavity enhanced optical heterodyne molecular spectroscopy (NICE-OHMS), which is a highly sensitive laser-based spectroscopic technique for detection of molecules in gas phase. The technique was developed in the mid-1990s at the Joint Institute for Laboratory Astrophysics (JILA).

    In this thesis, a realization of instrumentation for detection of acetylene in breath by a fiber laser-based NICE-OHMS instrumentation working in the near-infrared wavelength region is obtained. The results of this study show that the NICE-OHMS system is fully capable of detection of parts-per-billion (ppb) levels of acetylene in exhaled human breath.

  • 6. Abdullah, Muhammad Imran
    et al.
    Janjua, Muhammad Ramzan Saeed Ashraf
    Mahmood, Asif
    Ali, Sajid
    Ali, Muhammad
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Quantum Chemical Designing of Efficient Sensitizers for Dye Sensitized Solar Cells2013In: Bulletin of the Korean Chemical Society (Print), ISSN 0253-2964, E-ISSN 1229-5949, Vol. 34, no 7, p. 2093-2098Article in journal (Refereed)
    Abstract [en]

    Density functional theory (DFT) was used to determine the ground state geometries of indigo and new design dyes (IM-Dye-1 IM-Dye-2 and IM-Dye-3). The time dependant density functional theory (TDDFT) was used to calculate the excitation energies. All the calculations were performed in both gas and solvent phase. The LUMO energies of all the dyes were above the conduction band of TiO2, while the HOMOs were below the redox couple (except IM-Dye-3). The HOMO-LUMO energy gaps of new design dyes were smaller as compared to indigo. All new design dyes were strongly red shifted as compared to indigo. The improved light harvesting efficiency (LHE) and free energy change of electron injection Delta G(inject) of new designed sensitizers revealed that these materials would be excellent sensitizers. The broken coplanarity between the benzene near anchoring group having LUMO and the last benzene attached to TPA unit in all new design dyes consequently would hamper the recombination reaction. This theoretical designing will the pave way for experimentalists to synthesize the efficient sensitizers for solar cells.

  • 7.
    Abdullah, Sarwin
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Low-energy radar for handheld IR-cameras: Using mmWave radar as a complement for Multi Spectral Dynamic Imaging in handheld cameras2023Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesis
    Abstract [en]

    The aim of this project is to assess whether a low energy radar, more specifically the mmWave radar from Acconer could be used as a complement to the handheld cameras from FLIR, in order to improve its performance, in particular the alignment of visual and infra-red image. The specific camera used for this project is a FLIR C5 IR-camera. It was found that if the distance is known, then one could align the images more easily and by the help of the radar this could occur automatically instead of doing it manually as it is implemented today. 

    Download full text (pdf)
    fulltext
  • 8. Abou-Hamad, E.
    et al.
    Babaa, M. -R
    Bouhrara, M.
    Kim, Y.
    Saih, Y.
    Dennler, S.
    Mauri, F.
    Basset, J. -M
    Goze-Bac, C.
    Wågberg, Thomas
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Structural properties of carbon nanotubes derived from (13)C NMR2011In: Physical Review B. Condensed Matter and Materials Physics, ISSN 1098-0121, E-ISSN 1550-235X, Vol. 84, no 16, p. 165417-Article in journal (Refereed)
    Abstract [en]

    We present a detailed experimental and theoretical study on how structural properties of carbon nanotubes can be derived from 13C NMR investigations. Magic angle spinning solid state NMR experiments have been performed on single-and multiwalled carbon nanotubes with diameters in the range from 0.7 to 100 nm and with number of walls from 1 to 90. We provide models on how diameter and the number of nanotube walls influence NMR linewidth and line position. Both models are supported by theoretical calculations. Increasing the diameter D, from the smallest investigated nanotube, which in our study corresponds to the inner nanotube of a double-walled tube to the largest studied diameter, corresponding to large multiwalled nanotubes, leads to a 23.5 ppm diamagnetic shift of the isotropic NMR line position d. We show that the isotropic line follows the relation d = 18.3/D + 102.5 ppm, where D is the diameter of the tube and NMR line position d is relative to tetramethylsilane. The relation asymptotically tends to approach the line position expected in graphene. A characteristic broadening of the line shape is observed with the increasing number of walls. This feature can be rationalized by an isotropic shift distribution originating from different diamagnetic shielding of the encapsulated nanotubes together with a heterogeneity of the samples. Based on our results, NMR is shown to be a nondestructive spectroscopic method that can be used as a complementary method to, for example, transmission electron microscopy to obtain structural information for carbon nanotubes, especially bulk samples.

  • 9. Abou-Hamad, E.
    et al.
    Kim, Y.
    Bouhrara, M.
    Saih, Y.
    Wågberg, Thomas
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Luzzi, D. E.
    Goze-Bac, C.
    NMR strategies to study the local magnetic properties of carbon nanotubes2012In: Physica. B, Condensed matter, ISSN 0921-4526, E-ISSN 1873-2135, Vol. 407, no 4, p. 740-742Article in journal (Refereed)
    Abstract [en]

    The local magnetic properties of the one dimensional inner space of the nanotubes are investigated using C-13 nuclear magnetic resonance spectroscopy of encapsulated fullerene molecules inside single walled carbon nanotubes. Isotope engineering and magnetically purified nanotubes have been advantageously used on our study to discriminate between the different diamagnetic and paramagnetic shifts of the resonances. Ring currents originating from the pi electrons circulating on the nanotube, are found to actively screen the applied magnetic field by -36.9 ppm. Defects and holes in the nanotube walls cancel this screening locally. What is interesting, that at high magnetic fields, the modifications of the NMR resonances of the molecules from free to encapsulated can be exploited to determine some structural characteristics of the surrounding nanotubes, never observed experimentally. (C) 2011 Elsevier B.V. All rights reserved.

  • 10.
    Abou-Hamad, Edy
    et al.
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Goze-Bac, Christophe
    Université Montpellier II, France.
    Nitze, Florian
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Schmid, Michael
    Physikalisches Institut, Universität Stuttgart, Germany.
    Aznar, Robert
    Université Montpellier II, France.
    Mehring, Michael
    Physikalisches Institut, Universität Stuttgart, Germany.
    Wågberg, Thomas
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Electronic properties of Cs-intercalated single-walled carbon nanotubes derived from nuclear magnetic resonance2011In: New Journal of Physics, E-ISSN 1367-2630, Vol. 13, p. 053045 (1)-(9)Article in journal (Refereed)
    Abstract [en]

    We report on the electronic properties of Cs-intercalated singlewalled carbon nanotubes (SWNTs). A detailed analysis of the 13C and133Cs nuclear magnetic resonance (NMR) spectra reveals an increased metallization of the pristine SWNTs under Cs intercalation. The ‘metallization’ of CsxC materials where x =0–0.144 is evidenced from the increased local electronic density of states (DOS) n(EF)at the Fermi level of the SWNTs as determined from spin–lattice relaxation measurements. In particular, there are two distinct electronic phases called α and β and the transition between these occurs around x = 0.05. The electronic DOS at the Fermi level increases monotonically at low intercalation levels x <0.05 (α-phase), whereas it reaches a plateau in the range 0.05 < x < 0.143 at high intercalation levels (β-phase). The new β-phase is accompanied by a hybridization of Cs(6s) orbitals with C(sp2)orbitals of the SWNTs. In both phases, two types of metallic nanotubes are found with a low and a high local n(EF), corresponding to different local electronic band structures of the SWNTs.

    Download full text (pdf)
    fulltext
  • 11.
    Abou-Hamad, Edy
    et al.
    Universite Montpellier II.
    Kim, Y
    University of Pennsylvania.
    Talyzin, Alexandr
    Umeå University, Faculty of Science and Technology, Physics.
    Goze-Bac, Christophe
    Universite Montpellier II.
    Luzzi, David
    University of Pennsylvania.
    Rubio, Angelo
    University of Basque Country.
    Wågberg, Thomas
    Umeå University, Faculty of Science and Technology, Physics.
    Hydrogenation of C-60 in Peapods: Physical Chemistry in Nano Vessels2009In: The Journal of Physical Chemistry C, ISSN 1932-7447, E-ISSN 1932-7455, Vol. 113, no 20, p. 8583-8587Article in journal (Refereed)
    Abstract [en]

    Hydrogenation of C-60 molecules inside SWNT was achieved by direct reaction with hydrogen gas at elevated pressure and temperature. Evidence for the C-60 hydrogenation in peapods is provided by isotopic engineering with specific enrichment of encapsulated species and high resolution C-13 and H-1 NMR spectroscopy with the observation of characteristic diamagnetic and paramagnetic shifts of the NMR lines and the appearance of sp(3) carbon resonances. We estimate that approximately 78% of the C-60 molecules inside SWNTs are hydrogenated to an average degree of 14 hydrogen atoms per C-60 molecule. As a consequence, the rotational dynamics of the encapsulated C60Hx molecules is clearly hindered. Our successful hydrogenation experiments open completely new roads to understand and control confined chemical reactions at the nano scale

  • 12.
    Abou-Hamad, Edy
    et al.
    Universite Montpellier 2, France.
    Kim, Y.
    University of Pennsylvania, Philadelphia.
    Wågberg, Thomas
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Boesch, D.
    University of California at Berkeley, and Materials Sciences Division, Lawrence Berkeley National Laboratory.
    Aloni, S.
    University of California at Berkeley, and Materials Sciences Division, Lawrence Berkeley National Laboratory.
    Zettl, Alex
    University of California at Berkeley, and Materials Sciences Division, Lawrence Berkeley National Laboratory.
    Rubio, Angelo
    Universidad del Pas Vasco UPV/EHU.
    Luzzi, David E.
    University of Pennsylvania, Philadelphia.
    Goze-Bac, Christophe
    CNRS Universit Montpellier 2.
    Molecular dynamics and phase transition in one-dimensional crystal of C60 encapsulated inside single wall carbon nanotubes2009In: ACS Nano, ISSN 1936-0851, E-ISSN 1936-086X, Vol. 3, no 12, p. 3878-3883Article in journal (Refereed)
    Abstract [en]

    One-dimensional crystals of 25% 13C-enriched C60 encapsulated inside highly magnetically purified SWNTs were investigated by following the temperature dependence of the 13C NMR line shapes and the relaxation rates from 300 K down to 5 K. High-resolution MAS techniques reveal that 32% of the encapsulated molecules, so-called the C60α, are blocked at room temperature and 68%, labeled C60β, are shown to reversly undergo molecular reorientational dynamics. Contrary to previous NMR studies, spin−lattice relaxation time reveals a phase transition at 100 K associated with the changes in the nature of the C60β dynamics. Above the transition, the C60β exhibits continuous rotational diffusion; below the transition, C60β executes uniaxial hindered rotations most likely along the nanotubes axis and freeze out below 25 K. The associated activation energies of these two dynamical regimes are measured to be 6 times lower than in fcc-C60, suggesting a quiet smooth orientational dependence of the interaction between C60β molecules and the inner surface of the nanotubes.

  • 13.
    Abrahamsson, Anton
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Three dimensional tracking of multiple objects using digital holographic microscopy2016Independent thesis Advanced level (professional degree), 20 credits / 30 HE creditsStudent thesis
    Download full text (pdf)
    fulltext
  • 14.
    ABUDULIMU, ABASI
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Effectof Growth Time, Growth Temperature and Light  on Growth Mechanism of C60 nanorods2013Independent thesis Advanced level (degree of Master (Two Years)), 10 credits / 15 HE creditsStudent thesis
    Abstract [en]

    In this thesis work C60 nanorods were produced by Liquid-Liquid Interfacial Precipitation method (LLIP) assisted with 10 s of weak sonication. Ethanol and m-dichlorobenzene were used as poor and good solvents of C60, respectively. Five different temperatures, 4, 10, 20, 30, 40 and 50                         , were chosen as growth temperatures of different samples to investigate the effect of temperature on the grown structures. Different samples were prepared in the dark and under the light with various growth time to determine the effect of light and growth time on growth of C60 nanorods. The characterization of the grown C60 nanorods were conducted by transmission electron microscopy (TEM) and x-ray diffraction (XRD). The result of characterization indicated that the sonication introduced smaller C60 nanostructures; light irradiation and temperature increase (till 40 C0) during the growth time resulted in nanorods with smaller diameter, whereas the long growth time lead to the increase of the diameter of C60 nanorods. The as-grown C60 nanorods synthesized at different conditions possess an hcp crystal structure.    

    Download full text (pdf)
    Effect of Growth Time, Growth Temperature and Light on Growth Mechanism of C60 nanorods
  • 15.
    ABUDULIMU, ABASI
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Measuring the efficiency and charge carrier mobility of organic solar cells2012Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    P3HT single layer, P3HT/PCBM bilayer and P3HT/PCBM inverted bilayer devices were produced by spin coating organic layers onto ITO patterned glass in air, and clamping it with an Au coated silicon wafer, as top electrode, at the end (Figure13). Normal and inverted bilayer devices were also fabricated with and without PEDOT:PSS. All devices were divided into two groups by changing concentration of P3HT solution. The first group of devices contained 1.0 wt. % P3HT solution (P3HT in dichlorobenzene); the second group 0.56wt %. Power conversion efficiency, short circuit current, open circuit voltage, fill factor and maximum extracted power were measured on all produced devices.

    In contrast, all devices with 1.0wt % P3HT concentration showed better result than the devices with 0.56wt %. The highest result was obtained for P3HT single layer devices in both cases with short circuit current 56uA/cm2, open circuit voltage 0.94mV, maximum power 11.4uW/cm2 and power conversion efficiency of 0.11%. Inverted bilayer devices performed better than the non-inverted one. The devices with PEDOT:PSS got slightly better performance than the non-PEDOT:PSS used one.

    Charge carrier mobility measurement was done for all fabricated devices with charge extraction by linearly increasing voltage (CELIV) and dark injected space charge limited current (DI-SCLC) methods. All devices showed same magnitude of charge carrier mobility 10-5 cm2/V.s, the highest value still belongs to P3HT single layer device. The charge carrier mobility in all devices observed by DI-SCLC technique is one order of magnitude higher than by CELIV technique. This may be due to DI-SCLC method`s restriction on ohmic contacts between material and electrode.

    Download full text (pdf)
    Abdilim
  • 16.
    Adebiyi, Abdulafeez
    et al.
    Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, West Virginia 26506, USA.
    Alkandari, Rawan
    Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, West Virginia 26506, USA.
    Valiev, Damir
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics. Center for Combustion Energy, Key Laboratory for Thermal Science and Power Engineering of the Ministry of Education of China, Department of Energy and Power Engineering, Tsinghua University, Beijing, China.
    Akkerman, V’yacheslav
    Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, West Virginia, USA.
    Effect of surface friction on ultrafast flame acceleration in obstructed cylindrical pipes2019In: AIP Advances, E-ISSN 2158-3226, Vol. 9, no 3, article id 035249Article in journal (Refereed)
    Abstract [en]

    The Bychkov model of ultrafast flame acceleration in obstructed tubes [Valiev et al., "Flame Acceleration in Channels with Obstacles in the Deflagration-to-Detonation Transition," Combust. Flame 157, 1012 (2010)] employed a number of simplifying assumptions, including those of free-slip and adiabatic surfaces of the obstacles and of the tube wall. In the present work, the influence of free-slip/non-slip surface conditions on the flame dynamics in a cylindrical tube of radius R, involving an array of parallel, tightly-spaced obstacles of size αR, is scrutinized by means of the computational simulations of the axisymmetric fully-compressible gasdynamics and combustion equations with an Arrhenius chemical kinetics. Specifically, non-slip and free-slip surfaces are compared for the blockage ratio, α, and the spacing between the obstacles, ΔZ, in the ranges 1/3 ≤ α ≤ 2/3 and 0.25 ≤ ΔZ/R ≤ 2.0, respectively. 

    For these parameters, an impact of surface friction on flameacceleration is shown to be minor, only 1-4%, slightly facilitating acceleration in a tube with ΔZ/R = 0.5 and moderating acceleration in thecase of ΔZ/R = 0.25. Given the fact that the physical boundary conditions are non-slip as far as the continuum assumption is valid, the presentwork thereby justifies the Bychkov model, employing the free-slip conditions, and makes its wider applicable to the practical reality. Whilethis result can be anticipated and explained by a fact that flame propagation is mainly driven by its spreading in the unobstructed portion ofan obstructed tube (i.e. far from the tube wall), the situation is, however, qualitatively different from that in the unobstructed tubes, wheresurface friction modifies the flame dynamics conceptually.

    Download full text (pdf)
    fulltext
  • 17. Adhikary, N C
    et al.
    Misra, Amar P
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Bailung, H
    Chutia, J
    Ion-beam driven dust ion-acoustic solitary waves in dusty plasmas2010In: Physics of Plasmas, ISSN 1070-664X, E-ISSN 1089-7674, Vol. 17, no 4, article id 044502Article in journal (Refereed)
    Abstract [en]

    The nonlinear propagation of small but finite amplitude dust ion-acoustic waves (DIAWs) in an ion-beam driven plasma consisting of Boltzmannian electrons, positive ions, and stationary negatively charged dust grains is studied by using the standard reductive perturbation technique. It is shown that there exist two critical values (γc1) and (γc2) of ion beam to ion phase velocity ratio (γ), above and below which the beam generated solitons are not possible. The effects of the parameters, namely, γ, the ratio of the ion beam to plasma ion density (μi), the dust to ion density ratio (μd), and the ion beam to plasma ion mass ratio (μ) on both the amplitude and width of the stationary DIAWs, are analyzed numerically, and applications of the results to laboratory ion beam as well as space plasmas (e.g., auroral plasmas) are explained.

  • 18.
    Adjeiwaah, Mary
    Umeå University, Faculty of Medicine, Department of Radiation Sciences.
    Quality assurance for magnetic resonance imaging (MRI) in radiotherapy2017Licentiate thesis, comprehensive summary (Other academic)
    Abstract [en]

    Magnetic resonance imaging (MRI) utilizes the magnetic properties of tissues to generate image-forming signals. MRI has exquisite soft-tissue contrast and since tumors are mainly soft-tissues, it offers improved delineation of the target volume and nearby organs at risk. The proposed Magnetic Resonance-only Radiotherapy (MR-only RT) work flow allows for the use of MRI as the sole imaging modality in the radiotherapy (RT) treatment planning of cancer. There are, however, issues with geometric distortions inherent with MR image acquisition processes. These distortions result from imperfections in the main magnetic field, nonlinear gradients, as well as field disturbances introduced by the imaged object. In this thesis, we quantified the effect of system related and patient-induced susceptibility geometric distortions on dose distributions for prostate as well as head and neck cancers. Methods to mitigate these distortions were also studied.

    In Study I, mean worst system related residual distortions of 3.19, 2.52 and 2.08 mm at bandwidths (BW) of 122, 244 and 488 Hz/pixel up to a radial distance of 25 cm from a 3T PET/MR scanner was measured with a large field of view (FoV) phantom. Subsequently, we estimated maximum shifts of 5.8, 2.9 and 1.5 mm due to patient-induced susceptibility distortions. VMAT-optimized treatment plans initially performed on distorted CT (dCT) images and recalculated on real CT datasets resulted in a dose difference of less than 0.5%.

     The magnetic susceptibility differences at tissue-metallic,-air and -bone interfaces result in local B0 magnetic field inhomogeneities. The distortion shifts caused by these field inhomogeneities can be reduced by shimming.  Study II aimed to investigate the use of shimming to improve the homogeneity of local  B0 magnetic field which will be beneficial for radiotherapy applications. A shimming simulation based on spherical harmonics modeling was developed. The spinal cord, an organ at risk is surrounded by bone and in close proximity to the lungs may have high susceptibility differences. In this region, mean pixel shifts caused by local B0 field inhomogeneities were reduced from 3.47±1.22 mm to 1.35±0.44 mm and 0.99±0.30 mm using first and second order shimming respectively. This was for a bandwidth of 122 Hz/pixel and an in-plane voxel size of 1×1 mm2.  Also examined in Study II as in Study I was the dosimetric effect of geometric distortions on 21 Head and Neck cancer treatment plans. The dose difference in D50 at the PTV between distorted CT and real CT plans was less than 1.0%.

    In conclusion, the effect of MR geometric distortions on dose plans was small. Generally, we found patient-induced susceptibility distortions were larger compared with residual system distortions at all delineated structures except the external contour. This information will be relevant when setting margins for treatment volumes and organs at risk.  

    The current practice of characterizing MR geometric distortions utilizing spatial accuracy phantoms alone may not be enough for an MR-only radiotherapy workflow. Therefore, measures to mitigate patient-induced susceptibility effects in clinical practice such as patient-specific correction algorithms are needed to complement existing distortion reduction methods such as high acquisition bandwidth and shimming.

    Download full text (pdf)
    fulltext
  • 19.
    Adjeiwaah, Mary
    et al.
    Umeå University, Faculty of Medicine, Department of Radiation Sciences, Radiation Physics.
    Garpebring, Anders
    Umeå University, Faculty of Medicine, Department of Radiation Sciences, Radiation Physics.
    Nyholm, Tufve
    Umeå University, Faculty of Medicine, Department of Radiation Sciences, Radiation Physics.
    Sensitivity analysis of different quality assurance methods for magnetic resonance imaging in radiotherapy2020In: Physics and Imaging in Radiation Oncology, E-ISSN 2405-6316, Vol. 13, p. 21-27Article in journal (Refereed)
    Abstract [en]

    Background and purpose: There are currently no standard quality assurance (QA) methods for magnetic resonance imaging (MRI) in radiotherapy (RT). This work was aimed at evaluating the ability of two QA protocols to detect common events that affect quality of MR images under RT settings.

    Materials and methods: The American College of Radiology (ACR) MRI QA phantom was repeatedly scanned using a flexible coil and action limits for key image quality parameters were derived. Using an exploratory survey, issues that reduce MR image quality were identified. The most commonly occurring events were introduced as provocations to produce MR images with degraded quality. From these images, detection sensitivities of the ACR MRI QA protocol and a commercial geometric accuracy phantom were determined.

    Results: Machine-specific action limits for key image quality parameters set at mean&#xB1;3&#x3C3;" role="presentation" style="box-sizing: border-box; margin: 0px; padding: 0px; display: inline-block; line-height: normal; font-size: 16.2px; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;">mean±3σ were comparable with the ACR acceptable values. For the geometric accuracy phantom, provocations from uncorrected gradient nonlinearity effects and a piece of metal in the bore of the scanner resulted in worst distortions of 22.2 mm and 3.4 mm, respectively. The ACR phantom was sensitive to uncorrected signal variations, electric interference and a piece of metal in the bore of the scanner but could not adequately detect individual coil element failures.

    Conclusions: The ACR MRI QA phantom combined with the large field-of-view commercial geometric accuracy phantom were generally sensitive in identifying some common MR image quality issues. The two protocols when combined may provide a tool to monitor the performance of MRI systems in the radiotherapy environment.

    Download full text (pdf)
    fulltext
  • 20.
    Adranno, Brando
    et al.
    Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16C, SE-10691 Stockholm, Sweden.
    Renier, Olivier
    Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16C, SE-10691 Stockholm, Sweden.
    Bousrez, Guillaume
    Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16C, SE-10691 Stockholm, Sweden.
    Paterlini, Veronica
    Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16C, SE-10691 Stockholm, Sweden.
    Baryshnikov, Glib V.
    Department of Science and Technology, Laboratory of Organic Electronics, Linköping University, SE-60174 Norrköping, Sweden.
    Smetana, Volodymyr
    Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16C, SE-10691 Stockholm, Sweden.
    Tang, Shi
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Ågren, Hans
    Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden.
    Metlen, Andreas
    The QUILL Research Centre and School of Chemistry and Chemical Engineering The Queen’s University of Belfast Belfast, Northern Ireland BT9 5AG, UK.
    Edman, Ludvig
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Anja-Verena, Mudring
    Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16C, SE-10691 Stockholm, Sweden; Intelligent Advanced Materials (iAM), Department of Biological and Chemical Engineering and iNANO, Aarhus University, 8000 Aarhus C, Denmark.
    Rogers, Robin D.
    Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16C, SE-10691 Stockholm, Sweden; The QUILL Research Centre and School of Chemistry and Chemical Engineering The Queen’s University of Belfast Belfast, Northern Ireland BT9 5AG, UK.
    The 8-hydroxyquinolinium cation as a lead structure for efficient color-tunable ionic small molecule emitting materials2023In: Advanced Photonics Research, ISSN 2699-9293, Vol. 4, no 3, article id 2200279Article in journal (Refereed)
    Abstract [en]

    Albeit tris(8-hydroxyquinolinato) aluminum (Alq3) and its derivatives are prominent emitter materials for organic lighting devices, and the optical transitions occur among ligand-centered states, the use of metal-free 8-hydroxyquinoline is impractical as it suffers from strong nonradiative quenching, mainly through fast proton transfer. Herein, it is shown that the problem of rapid proton exchange and vibration quenching of light emission can be overcome not only by complexation, but also by organization of the 8-hydroxyquinolinium cations into a solid rigid network with appropriate counter-anions (here bis(trifluoromethanesulfonyl)imide). The resulting structure is stiffened by secondary bonding interactions such as pi-stacking and hydrogen bonds, which efficiently block rapid proton transfer quenching and reduce vibrational deactivation. Additionally, the optical properties are tuned through methyl substitution from deep blue (455 nm) to blue-green (488 nm). Time-dependent density functional theory (TDFT) calculations reveal the emission to occur from which an unexpectedly long-lived S-1 level, unusual for organic fluorophores. All compounds show comparable, even superior photoluminescence compared to Alq3 and related materials, both as solids and thin films with quantum yields (QYs) up to 40-50%. In addition, all compounds show appreciable thermal stability with decomposition temperatures above 310 °C.

    Download full text (pdf)
    fulltext
  • 21.
    Agvik, Simon
    Umeå University, Faculty of Science and Technology, Department of Physics.
    A deformable terrain model in multi-domain dynamics using elastoplastic constraints: An adaptive approach2015Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    Achieving realistic simulations of terrain vehicles in their work environment does not only require a careful model of the vehicle itself but the vehicle's interactions with the surroundings are equally important. For off-road ground vehicles the terrain will heavily affect the behaviour of the vehicle and thus puts great demands on the terrain model.

    The purpose of this project has been to develop and evaluate a deformable terrain model, meant to be used in real-time simulations with multi-body dynamics. The proposed approach is a modification of an existing elastoplastic model based on linear elasticity theory and a capped Drucker-Prager model, using it in an adaptive way. The original model can be seen as a system of rigid bodies connected by elastoplastic constraints, representing the terrain. This project investigates if it is possible to create dynamic bodies just when it is absolutely necessary, and store information about possible deformations in a grid.

    Two methods used for transferring information between the dynamic bodies and the grid have been evaluated; an interpolating approach and a discrete approach. The test results indicate that the interpolating approach is preferable, with better stability to an equal performance cost. However, stability problems still exist that have to be solved if the model should be useful in a commercial product.

    Download full text (pdf)
    fulltext
  • 22.
    Ahlberg, Sebastian
    et al.
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Ambjörnsson, Tobias
    Lizana, Ludvig
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Many-body effects on tracer particle diffusion with applications for single-protein dynamics on DNA2015In: New Journal of Physics, E-ISSN 1367-2630, Vol. 17, article id 043036Article in journal (Refereed)
    Abstract [en]

    30% of the DNA in E. coli bacteria is covered by proteins. Such a high degree of crowding affects the dynamics of generic biological processes (e.g. gene regulation, DNA repair, protein diffusion etc) in ways that are not yet fully understood. In this paper, we theoretically address the diffusion constant of a tracer particle in a one-dimensional system surrounded by impenetrable crowder particles. While the tracer particle always stays on the lattice, crowder particles may unbind to a surrounding bulk and rebind at another, or the same, location. In this scenario we determine how the long time diffusion constant D (after many unbinding events) depends on (i) the unbinding rate of crowder particles k(off), and (ii) crowder particle line density rho, from simulations (using the Gillespie algorithm) and analytical calculations. For small k(off), we find D similar to k(off)/rho(2) when crowder particles do not diffuse on the line, and D similar to root Dk(off)/rho when they are diffusing; D is the free particle diffusion constant. For large k(off), we find agreement with mean-field results which do not depend on k(off). From literature values of k(off) and D, we show that the small k(off) -limit is relevant for in vivo protein diffusion on crowded DNA. Our results apply to single-molecule tracking experiments.

    Download full text (pdf)
    fulltext
  • 23.
    Ahlman, Björn
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Coarse-Graining Fields in Particle-Based Soil Models2020Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    In soil, where trees and crops grow, heavy vehicles shear and compact the soil, leading to reduced plant growth and diminished nutrient recycling. Computer simulations offer the possibility to improve the understanding of these undesired phenomena.

    In this thesis, soils were modelled as large collections of contacting spherical particles using the Discrete Element Method (DEM) and the physics engine AGX Dynamics, and these entities were analyzed.

    In the first part of the thesis, soils, which were considered to be continua, were subjected to various controlled deformations and fields for quantities such as stress and strain were visualized using coarse graining (CG). These fields were then compared against analytical solutions. The main goal of the thesis was to evaluate the usefulness, accuracy, and precision of this plotting technique when applied to DEM-soils. The general behaviour of most fields agreed well with analytical or expected behaviour. Moreover, the fields presented valuable information about phenomena in the soils. Relative errors varied from 1.2 to 27 %. The errors were believed to arise chiefly from non-uniform displacement (due to the inherent granularity in the technique), and unintended uneven particle distribution. The most prominent drawback with the technique was found to be the unreliability of the plots near the boundaries. This is significant, since the behaviour of a soil at the surface where it is in contact with e.g. a vehicle tyre is of interest.

    In the second part of the thesis, a vehicle traversed a soil and fields were visualized using the same technique. Following a limited analysis, it was found that the stress in the soil can be crudely approximated as the stress in a linear elastic solid.

    Download full text (pdf)
    CGfieldsInParticleBasedSoilModels
  • 24.
    Ahlman, Björn
    Umeå University, Faculty of Science and Technology, Department of Physics.
    The Physics and Image Processing of Cryo-ElectronTomography and the Estimation of Resolution using the Programs MOTIONCOR2 1.0.2 and CTFFIND 4.1.82019Independent thesis Advanced level (degree of Master (One Year)), 10 credits / 15 HE creditsStudent thesis
    Abstract [en]

    We present a brief overview of the physics of cryo-electron tomography (cryo-ET) and the Image Processing related to this field. This serves as an introduction for readers unfamiliar with cryo-ET and as a background to the second part of the report, which concerns the programs CTFFIND and MOTIONCOR2. We correct tiltseries for sample motion with two different settings with MOTIONCOR2: with (only) Global Motion Correction and with Global+Local Motion Correction (5x5 patches). Then, using CTFFIND, we estimate the resolution in the tiltseries for the data sets without Motion Correction, with (only) Global Motion Correction, and with Global+Local Motion Correction, and make an assessment of the reliability of CTFFIND as a program for estimating the resolution. A total of 410 images were analyzed (10 tiltseries of 41 images each). When considering mean resolutions, we find CTFFIND to be useful and reliable, particularly when differences in means are of interest (e.g. differences between angles or defoci). However, due to e.g. the sensitivity of CTFFIND with respect to input parameters, we conjecture that CTFFIND is less reliable when individual images are analyzed, particularly when absolute resolutions are of interest. Provided that CTFFIND is accurate enough for a statistical analysis with respect to resolution, which we believe it is, the average increase in resolution when (only) Global Motion Correction is used for tiltseries from -60° to 60° with defocus -3 μm is around 0.9 Å (246 images analyzed). For defocus -5 μm, the equivalent average increase in resolution is around 1.1 Å (164 images analyzed). Results indicate that resolution is roughly linearly proportional to the magnitude of the tiltangle. The average difference in resolution between data sets with (only) Global Motion Correction and Global+Local Motion Correction for both defocus -3 μm and -5 μm is 0.0 Å, for two significant figures. This suggests that the sample motion is predominantly Global. For defocus -3 μm and -5 μm, there is a confidence level of 95% that if only Global Motion Correction is applied to a large set of tiltseries, a majority of the images will have a resolution that is higher than the images in the same set to which Motion Correction has not been applied (when corresponding images are compared). In an equivalent statistical analysis, we can not claim that either “(only) Global Motion Correction” or “Global+Local Motion Correction” is superior.

  • 25.
    Ahmed, Shibbir
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Cadmium sulphide / Zinc sulphide quantum dot decoration of three-dimensional porous graphene2014Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Download full text (pdf)
    fulltext
  • 26. Aikio, Anita T.
    et al.
    Pitkänen, Timo
    Fontaine, Dominic
    Dandouras, Iannis
    Amm, Olaf
    Kozlovsky, Alexander
    Vaivads, Andris
    Fazakerley, Andrew
    EISCAT and Cluster observations in the vicinity of the dynamical polar cap boundary2008In: Annales Geophysicae, ISSN 0992-7689, E-ISSN 1432-0576, Vol. 26, p. 87-105Article in journal (Refereed)
  • 27.
    Aikio, Anita T.
    et al.
    Department of Physical Sciences, University of Oulu, Finland.
    Pitkänen, Timo
    Department of Physical Sciences, University of Oulu, Finland.
    Fontaine, Dominic
    CETP/UVSQ, Velizy, France.
    Dandouras, Iannis
    CESR/CNRS, Toulouse, France.
    Amm, Olaf
    Finnish meteorological Institute, Helsinki, Finland.
    Kozlovsky, Alexander
    Department of Physical Sciences, University of Oulu, Finland; Sodankylä Geophysical Observatory, Sodankylä, Finland.
    Vaivads, Andris
    Swedish Institute of Space Physics, Ångströmlaboratoriet, Uppsala, Sweden.
    Fazakerley, Andrew
    Mullard Space Science Laboratory, University College, London, UK.
    EISCAT and Cluster observations in the vicinity of the dynamical polar cap boundary2008In: Annales Geophysicae, ISSN 0992-7689, E-ISSN 1432-0576, Vol. 26, p. 87-105Article in journal (Refereed)
    Abstract [en]

    The dynamics of the polar cap boundary and auroral oval in the nightside ionosphere are studied during late expansion and recovery of a substorm from the region between Tromsø (66.6 degree cgmLat) and Longyearbyen (75.2 degree cgmLat) on 27 February 2004 by using the coordinated EISCAT incoherent scatter radar, MIRACLE magnetometer and Cluster satellite measurements. During the late substorm expansion/early recovery phase, the polar cap boundary (PCB) made zig-zag-type motion with amplitude of 2.5 degree cgmLat and period of about 30 min near magnetic midnight. We suggest that the poleward motions of the PCB were produced by bursts of enhanced reconnection at the near-Earth neutral line (NENL). The subsequent equatorward motions of the PCB would then represent the recovery of the merging line towards the equilibrium state (Cowley and Lockwood, 1992). The observed bursts of enhanced westward electrojet just equatorward of the polar cap boundary during poleward expansions were produced plausibly by particles accelerated in the vicinity of the neutral line and thus lend evidence to the Cowley-Lockwood paradigm.

    During the substorm recovery phase, the footpoints of the Cluster satellites at a geocentric distance of 4.4RE mapped in the vicinity of EISCAT measurements. Cluster data indicate that outflow of H+ and O+ ions took place within the plasma sheet boundary layer (PSBL) as noted in some earlier studies as well. We show that in this case the PSBL corresponded to a region of enhanced electron temperature in the ionospheric F region. It is suggested that the ion outflow originates from the F region as a result of increased ambipolar diffusion. At higher altitudes, the ions could be further energized by waves, which at Cluster altitudes were observed as BBELF (broad band extra low frequency) fluctuations.

    The four-satellite configuration of Cluster revealed a sudden poleward expansion of the PSBL by 2 degree during ˜ 5 min. The beginning of the poleward motion of the PCB was associated with an intensification of the downward FAC at the boundary. We suggest that the downward FAC sheet at the PCB is the high-altitude counterpart of the Earthward flowing FAC produced in the vicinity of the magnetotail neutral line by the Hall effect (Sonnerup, 1979) during a short-lived reconnection pulse.

    Download full text (pdf)
    fulltext
  • 28.
    Aikio, Anita T.
    et al.
    Oulu, Finland.
    Pitkänen, Timo
    Oulu, Finland.
    Honkonen, Ilja
    Helsinki, Finland.
    Palmroth, Minna
    Helsinki, Finland.
    Amm, Olaf
    Helsinki, Finland.
    IMF effect on the polar cap contraction and expansion during a period of substorms2013In: Annales Geophysicae, ISSN 0992-7689, E-ISSN 1432-0576, Vol. 31, p. 1021-1034Article in journal (Refereed)
    Abstract [en]

    The polar cap boundary (PCB) location and motion in the nightside ionosphere has been studied by using measurements from the EISCAT radars and the MIRACLE magnetometers during a period of four substorms on 18 February 2004. The OMNI database has been used for observations of the solar wind and the Geotail satellite for magnetospheric measurements. In addition, the event was modelled by the GUMICS-4 MHD simulation. The simulation of the PCB location was in a rather good agreement with the experimental estimates at the EISCAT longitude. During the first three substorm expansion phases, neither the local observations nor the global simulation showed any poleward motions of the PCB, even though the electrojets intensified. Rapid poleward motions of the PCB took place only in the early recovery phases of the substorms. Hence, in these cases the nightside reconnection rate was locally higher in the recovery phase than in the expansion phase.

    In addition, we suggest that the IMF Bz component correlated with the nightside tail inclination angle and the PCB location with about a 17-min delay from the bow shock. By taking the delay into account, the IMF northward turnings were associated with dipolarizations of the magnetotail and poleward motions of the PCB in the recovery phase. The mechanism behind this effect should be studied further.

    Download full text (pdf)
    fulltext
  • 29. Aikio, Anita T.
    et al.
    Pitkänen, Timo
    Honkonen, Ilja
    Palmroth, Minna
    Amm, Olaf
    IMF effect on the polar cap contraction and expansion during a period of substorms2013In: Annales Geophysicae, ISSN 0992-7689, E-ISSN 1432-0576, Vol. 31, p. 1021-1034Article in journal (Refereed)
  • 30. Aikio, Anita T.
    et al.
    Pitkänen, Timo
    Kozlovsky, Alexander
    Amm, Olaf
    Method to locate the polar cap boundary in the nightside ionosphere and application to a substorm event2006In: Annales Geophysicae, ISSN 0992-7689, E-ISSN 1432-0576, Vol. 24, p. 1905-1917Article in journal (Refereed)
    Download full text (pdf)
    fulltext
  • 31.
    Aizawa, S.
    et al.
    IRAP, CNRS-CNES-UPS, Toulouse, France; Graduate School of Science, Tohoku University, Sendai, Japan.
    Griton, L.S.
    IRAP, CNRS-CNES-UPS, Toulouse, France; LESIA, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Université de Paris, 5 place Jules Janssen, Meudon, France.
    Fatemi, Shahab
    Umeå University, Faculty of Science and Technology, Department of Physics. Swedish Institute of Space Physics, Kiruna, Sweden.
    Exner, W.
    Institute for Geophysics and Extraterrestrial Physics, Technische Universität Braunschweig, Braunschweig, Germany; Institute for Theoretical Physics, Technische Universität Braunschweig, Braunschweig, Germany; School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, United States.
    Deca, J.
    Laboratory for Atmospheric and Space Physics (LASP), University of Colorado Boulder, CO, Boulder, United States; Institute for Modeling Plasma, Atmospheres and Cosmic Dust, NASA/SSERVI, CA, United States; Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles à Saint Quentin, Guyancourt, France.
    Pantellini, F.
    LESIA, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, Université de Paris, 5 place Jules Janssen, Meudon, France.
    Yagi, M.
    RIKEN, Kobe, Japan.
    Heyner, D.
    Institute for Geophysics and Extraterrestrial Physics, Technische Universität Braunschweig, Braunschweig, Germany.
    Génot, V.
    IRAP, CNRS-CNES-UPS, Toulouse, France.
    André, N.
    IRAP, CNRS-CNES-UPS, Toulouse, France.
    Amaya, J.
    CmPA, Mathematics Department, KU Leuven, Belgium.
    Murakami, G.
    ISAS/JAXA, Sagamihara, Japan.
    Beigbeder, L.
    GFI, Toulouse, France.
    Gangloff, M.
    IRAP, CNRS-CNES-UPS, Toulouse, France.
    Bouchemit, M.
    IRAP, CNRS-CNES-UPS, Toulouse, France.
    Budnik, E.
    Noveltis, Toulouse, France.
    Usui, H.
    Kobe University, Kobe, Japan.
    Cross-comparison of global simulation models applied to Mercury's dayside magnetosphere2021In: Planetary and Space Science, ISSN 0032-0633, E-ISSN 1873-5088, Vol. 198, article id 105176Article in journal (Refereed)
    Abstract [en]

    We present the first comparison of multiple global simulations of the solar wind interaction with Mercury's dayside magnetosphere, conducted in the framework of the international collaborative project SHOTS - Studies on Hermean magnetosphere Oriented Theories and Simulations. Two 3D magnetohydrodynamic and two 3D hybrid simulation codes are used to investigate the global response of the Hermean magnetosphere without its exosphere to a northward-oriented interplanetary magnetic field. We cross-compare the results of the four codes for a theoretical case and a MESSENGER orbit with similar upstream plasma conditions. The models agree on bowshock and magnetopause locations at 2.1 ​± ​0.11 and 1.4 ​± ​0.1 Mercury planetary radii, respectively. The latter locations may be influenced by subtle differences in the treatment of the plasma boundary at the planetary surface. The predicted magnetosheath thickness varies less between the codes. Finally, we also sample the plasma data along virtual trajectories of BepiColombo's Magnetospheric and Planetary Orbiter. Our ability to accurately predict the structure of the Hermean magnetosphere aids the analysis of the onboard plasma measurements of past and future magnetospheric missions.

    Download full text (pdf)
    fulltext
  • 32. Ajuria, Jon
    et al.
    Arnaiz, Maria
    Botas, Cristina
    Carriazo, Daniel
    Mysyk, Roman
    Rojo, Teofilo
    Talyzin, Alexandr V.
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Goikolea, Eider
    Graphene-based lithium ion capacitor with high gravimetric energy and power densities2017In: Journal of Power Sources, ISSN 0378-7753, E-ISSN 1873-2755, Vol. 363, p. 422-427Article in journal (Refereed)
    Abstract [en]

    Hybrid capacitor configurations are now of increasing interest to overcome the current energy limitations of supercapacitors. In this work, we report a lithium ion capacitor (LIC) entirely based on graphene. On the one hand, the negative-battery-type- electrode consists of a self-standing, binder-free 3D macroporous foam formed by reduced graphene oxide and decorated with tin oxide nanoparticles (SnO2-rGO). On the other hand, the positive-capacitor-type- electrode is based on a thermally expanded and physically activated reduced graphene oxide (a-TEGO). For comparison purposes, a symmetric electrical double layer capacitor (EDLC) using the same activated graphene in 1.5 M Et4NBE4/ACN electrolyte is also assembled. Built in 1 M LiPF6 EC:DMC, the graphene-based LIC shows an outstanding, 10-fold increase in energy density with respect to its EDLC counterpart at low discharge rates (up to 200 Wh kg(-1)). Furthermore, it is still capable to deliver double the energy in the high power region, within a discharge time of few seconds.

  • 33.
    Akhtari, Mohammad Mehdi
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Accuracy of inverse treatment planning on computed tomography like images derived from magnetic resonance data2013Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    Treatment planning for radiotherapy involves different types of imaging to delineate target volume precisely. The most suitable sources to get 3D information of the patient are the computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET)/CT modalities. CT is a modern medical imaging technique that allows three-dimensional treatment planning and conformal treatment techniques. By combining CT images with efficient dosimetry software, accurate patient positioning methods and verification and quality assurance good results can be achieved. The CT images show how the radiation interacts with the material based on each tissue has a different attenuation coefficient, so the data can be used for dose calculations in treatment planning.

    Radiation oncology is therapeutic modality, in which irradiating cancer cells as target is the main goal while always try to limit the dose to healthy tissues and organs. CT images have good potentials because they can provide high geometrical accuracy and electron density information. Having said that, however, using CT images alone for planning does not provide enough information in order to delineate the target volume accurately because the attenuation in soft tissue is fairly constant therefore the soft tissue contrast is poor. Here, (MR) imaging can be very useful since it has superior soft tissue contrast especially in conditions such as prostate cancer, brain lesions, and head and neck tumors. It should be noted that MR images cannot provide electron density information that is required for dose calculations.

    It has been hypothesized that since MRI images have certain benefits in comparison with CT images such as its superior soft tissue contrast which improves contrast resolution between different types of tissues, it would be beneficial to use MRI alone for both target delineation and treatment planning to save time and costs. This was investigated by introducing substitute computed tomography (SCT) which can be interpreted as CT equivalent information obtained by MRI images.

    We used data from five patients with intracranial tumors, and reviewed their initial dosimetric treatment plans that were based solely on CT images, that data was also used to evaluate the dosimetric accuracy of our research treatment plans. Optimization plans that are based on CT images and substitute CT (SCT) was compared with each other in the first step. On the second step the treatment plan that was based on SCT images was transferred to the CT images without any changes and comparisons between the dose calculations on both data sets were made. The delivered dose to planning target volume (PTV) and risk organs was compared.

    Gamma index results between SCT and transferred plan showed no difference in the dose distribution map in PTV. The maximum difference was in the outer contour to the skull. The average and median dose delivered to PTV was within 0.35% difference studying in all patients.

    In conclusion for patients with intracranial tumors the dosimetric accuracy of treatment plans based on SCT and MR images were very accurate, and we demonstrated that it was possible to reach the same dose volume histograms by SCT compared to CT with minimal differences, which were not significant. 

    Download full text (pdf)
    fulltext
  • 34.
    Akkerman, V'yacheslav
    Umeå University, Faculty of Science and Technology, Physics.
    Turbulent burning, flame acceleration, explosion triggering2007Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    The present thesis considers several important problems of combustion theory, which are closely related to each other: turbulent burning, flame interaction with walls in different geometries, flame acceleration and detonation triggering.

    The theory of turbulent burning is developed within the renormalization approach. The theory takes into account realistic thermal expansion of burning matter. Unlike previous renormalization models of turbulent burning, the theory includes flame interaction with vortices aligned both perpendicular and parallel to average direction of flame propagation. The perpendicular vortices distort a flame front due to kinematical drift; the parallel vortices modify the flame shape because of the centrifugal force. A corrugated flame front consumes more fuel mixture per unit of time and propagates much faster. The Darrieus-Landau instability is also included in the theory. The instability becomes especially important when the characteristic length scale of the flow is large.

    Flame interaction with non-slip walls is another large-scale effect, which influences the flame shape and the turbulent burning rate. This interaction is investigated in the thesis in different geometries of tubes with open / closed ends. When the tube ends are open, then flame interaction with non-slip walls leads to an oscillating regime of burning. Flame oscillations are investigated for different flame parameters and tube widths. The average increase in the burning rate in the oscillations is found.

    Then, propagating from a closed tube end, a flame accelerates according to the Shelkin mechanism. In the theses, an analytical theory of laminar flame acceleration is developed. The theory predicts the acceleration rate, the flame shape and the velocity profile in the flow pushed by the flame. The theory is validated by extensive numerical simulations. An alternative mechanism of flame acceleration is also considered, which is possible at the initial stages of burning in tubes. The mechanism is investigated using the analytical theory and direct numerical simulations. The analytical and numerical results are in very good agreement with previous experiments on “tulip” flames.

    The analytical theory of explosion triggering by an accelerating flame is developed. The theory describes heating of the fuel mixture by a compression wave pushed by an accelerating flame. As a result, the fuel mixture may explode ahead of the flame front. The explosion time is calculated. The theory shows good agreement with previous numerical simulations on deflagration-to-detonation transition in laminar flows.

    Flame interaction with sound waves is studied in the geometry of a flame propagating to a closed tube end. It is demonstrated numerically that intrinsic flame oscillations coming into resonance with acoustic waves may lead to violent folding of the flame front with a drastic increase in the burning rate. The flame folding is related to the Rayleigh-Taylor instability developing at the flame front in the oscillating acceleration field of the acoustic wave.

    Download full text (pdf)
    FULLTEXT01
  • 35.
    Ako, Thomas
    et al.
    Laboratory of Photonic and Microwave Engineering, School of Information and Communication Technology, Royal Insitute of Technology, Electrum 229, Kista, Sweden.
    Yan, Min
    Laboratory of Photonic and Microwave Engineering, School of Information and Communication Technology, Royal Insitute of Technology, Electrum 229, Kista, Sweden.
    Qiu, Min
    Laboratory of Photonic and Microwave Engineering, School of Information and Communication Technology, Royal Insitute of Technology, Electrum 229, Kista, Sweden.
    Design of invisibility cloaks with an open tunnel2010In: Optics Express, E-ISSN 1094-4087, Vol. 18, no 26, p. 27060-27066Article in journal (Refereed)
    Abstract [en]

    In this paper we apply the methodology of transformation optics for design of a novel invisibility cloak which can possess an open tunnel. Such a cloak facilitates the insertion (retrieval) of matter into (from) the cloak’s interior without significantly affecting the cloak’s performance, overcoming the matter exchange bottleneck inherent to most previously proposed cloak designs. We achieve this by applying a transformation which expands a point at the origin in electromagnetic space to a finite area in physical space in a highly anisotropic manner. The invisibility performance of the proposed cloak is verified by using full-wave finite-element simulations.

  • 36. Aksenova, N.A.
    et al.
    Isakina, A.P.
    Prokhvatilov, A.I.
    Strzhemechny, M.A.
    Soldatov, Alexander V.
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Sundqvist, Bertil
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Structure studies of C60 polymerized at low pressures1997In: Fullerenes: Recent Advances in the Chemistry and Physics of Fullerenes and Related Materials, vol. 5, Pennington, NJ: The Electrochemical Society , 1997, p. 687-694Conference paper (Refereed)
    Abstract [en]

    The structure and lattice properties of a polymerized C60 sample were investigated by X-ray powder diffraction over the range from liquid-nitrogen to room temperature. The aim of these studies was to establish the effect of low-pressure compression (up to 1.1 GPa) on the phase composition of the sample, to determine the structure of the phases involved, to obtain the variation of the lattice parameters with temperature, to observe eventual phase transformation in polymerized C60, and to elucidate the evolution of the orientational order with varying temperature. Analysis of the room-temperature diffraction patterns indicates that the sample contained at least two major phases, namely rhombohedral and and tetragonal with the polymerization array close to two-dimensional. Our data obtained on samples annealed at 300 C in the air allow us to conclude that polymerized C60 converts to a mixture of the fcc structure plus a new phase, presumably C60O.

  • 37. Aladi, M.
    et al.
    Bolla, R.
    Cardenas, D. E.
    Veisz, László
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Foldes, I. B.
    Cluster size distributions in gas jets for different nozzle geometries2017In: Journal of Instrumentation, ISSN 1748-0221, E-ISSN 1748-0221, Vol. 12, article id C06020Article in journal (Refereed)
    Abstract [en]

    Cluster size distributions were investigated in case of different nozzle geometries in argon and xenon using Rayleigh scattering diagnostics. Different nozzle geometries result in different behaviour, therefore both spatial- and temporal cluster size distributions were studied to obtain a well-characterized cluster target. It is shown that the generally used Hagena scaling can result in a significant deviation from the observed data and the behaviour cannot be described by a single material condensation parameter. The results along with the nanoplasma model applied to the data of previous high harmonic generation experiments allow the independent measurement of cluster size and cluster density.

  • 38.
    Alakpa, Enateri V.
    et al.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB).
    Bahrd, Anton
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Wiklund, Krister
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Andersson, Magnus
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Novikov, Lev N.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB).
    Ljungberg, Christina
    Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Hand Surgery.
    Kelk, Peyman
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB).
    Bioprinted schwann and mesenchymal stem cell co-cultures for enhanced spatial control of neurite outgrowth2023In: Gels, E-ISSN 2310-2861, Vol. 9, no 3, article id 172Article in journal (Refereed)
    Abstract [en]

    Bioprinting nerve conduits supplemented with glial or stem cells is a promising approach to promote axonal regeneration in the injured nervous system. In this study, we examined the effects of different compositions of bioprinted fibrin hydrogels supplemented with Schwann cells and mesenchymal stem cells (MSCs) on cell viability, production of neurotrophic factors, and neurite outgrowth from adult sensory neurons. To reduce cell damage during bioprinting, we analyzed and optimized the shear stress magnitude and exposure time. The results demonstrated that fibrin hydrogel made from 9 mg/mL of fibrinogen and 50IE/mL of thrombin maintained the gel&rsquo;s highest stability and cell viability. Gene transcription levels for neurotrophic factors were significantly higher in cultures containing Schwann cells. However, the amount of the secreted neurotrophic factors was similar in all co-cultures with the different ratios of Schwann cells and MSCs. By testing various co-culture combinations, we found that the number of Schwann cells can feasibly be reduced by half and still stimulate guided neurite outgrowth in a 3D-printed fibrin matrix. This study demonstrates that bioprinting can be used to develop nerve conduits with optimized cell compositions to guide axonal regeneration.

    Download full text (pdf)
    fulltext
  • 39.
    Alam, Md Khorshed
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Fabrication of surface enhanced Raman spectroscopy (SERS) active substrates based on vertically aligned nitrogen doped carbon nanotube forest2015Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    This thesis work describes the fabrication and surface enhanced Raman spectroscopy (SERS) characterization of vertically aligned nitrogen (N) doped multi walled carbon nanotube (MWCNT) forests coated by silver (Ag) and gold (Au) nanoparticles. In the present work, the CNT forests were grown from a catalyst metal layer by the chemical vapor deposition (CVD) process at temperature of 800 oC and a physical vapor deposition (PVD) and annealing processes were applied subsequently for the evaporation and diffusion of noble metal nanoparticles on the forest.

    Transistor patterning of 20, 50 and 100 μm were made onto the silicon-oxide (SiO2) wafers through the photolithography process with and without depositing a thickness of 10 nm titanium (Ti) buffer layer on the Si-surfaces. Iron (Fe) and cobalt (Co) were used together to deposite a thickness of 5 nm catalyst layer onto the Single Side Polished (SSP) wafers. As carbon and nitrogen precursor for the CNT growth was used pyridine. Two different treatment times (20 and 60 minutes) in the CVD process determined the CNT forest height. Scanning Electron Microscopy (SEM) imaging was employed to characterize the CNT forest properties and Ag and Au nanoparticle distribution along the CNT walls.

    The existence of “hot spots” created by the Ag and Au nanoparticles through the surface roughness and plasmonic properties was demonstrated by the SERS measurements. Accordingly, the peak intensity at wave number of 1076 cm-1 was picked up from each SERS spectra to establish the Ag- and Au-trend curves with different concentrations of 4-ATP solution. The SERS mapping was also carried out to study the Ag- and Au-coated CNT surface homogeneity and “hot spots” distribution on the CNT surface. The SERS enhancement factors (EF) were calculated by applying an analyte solution of ethanolic 4-ATP on the CNT surface. The calculated values of EF from Ag- and Au-coated CNT forests were 9×106 and 2.7×105 respectively. 

    Download full text (pdf)
    Attachment
  • 40. Aleksandrovskii, A. N.
    et al.
    Dolbin, A.V.
    Esel'son, V.B.
    Gavrilko, V.G.
    Manzhelii, V.G.
    Udovidchenko, B.G.
    Bakai, A.S.
    Gadd, G.E.
    Moricca, S.
    Sundqvist, Bertil
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Low-temperature thermal expansion of pure and inert gas-doped fullerite C602003In: Fizika Nizkikh Temperatur (Kharkov), ISSN 0132-6414 (Print) 1816-0328 (On-line), Vol. 29, no 4, p. 432-442Article in journal (Refereed)
    Abstract [en]

    The low temperature (2–24 K) thermal expansion of pure (single-crystal and polycrystalline) C60 and polycrystalline C60 intercalated with He, Ne, Ar, and Kr has been investigated using the high-resolution capacitance dilatometer. The investigation of the time dependence of the sample length variations deltaL(t) on heating by deltaT shows that the thermal expansion is determined by the sum of positive and negative contributions, which have different relaxation times. The negative thermal expansion usually prevails at helium temperatures. The positive expansion is connected with the phonon thermalization of the system. The negative expansion is caused by reorientation of the C60 molecules. It is assumed that the reorientation is of a quantum character. The inert gas impurities affect the reorientation of the C60 molecules very strongly, especially at liquid helium temperatures. A temperature hysteresis of the thermal expansion coefficient of Kr– and He–C60 solutions has been revealed. The hysteresis is attributed to orientational polyamorphous transformation in these systems.

  • 41. Aleksandrovskii, A. N.
    et al.
    Esel'son, V.B.
    Manzhelii, Vadim Grigorovich
    Udovidchenko, B.G.
    Soldatov, Alexander
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Sundqvist, Bertil
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Negative thermal expansion of fullerite C60 at helium temperatures1997In: Low temperature physics (Woodbury, N.Y., Print), ISSN 1063-777X, E-ISSN 1090-6517, Vol. 23, no 11, p. 943-946Article in journal (Refereed)
    Abstract [en]

    The thermal expansion of fullerite C60 has been measured in the temperature range 2–9 K. A compacted fullerite sample with a diameter of about 6 mm and height of 2.4 mm was used. It was found that at temperatures below ~ 3.4 K the linear thermal expansion coefficient becomes negative. At temperatures above 5 K our results are in good agreement with the available literature data. A qualitative explanation of the results is proposed

  • 42. Aleksandrovskii, A. N.
    et al.
    Esel'son, V.B.
    Manzhelii, V.G.
    Udovidchenko, B.G.
    Soldatov, Alexander
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Sundqvist, Bertil
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Thermal expansion of single-crystal fullerite C60 at helium temperatures2000In: Low temperature physics (Woodbury, N.Y., Print), ISSN 1063-777X, E-ISSN 1090-6517, Vol. 26, no 1, p. 75-80Article in journal (Refereed)
    Abstract [en]

    The thermal expansion of single-crystal fullerite C60 has been studied in the range of liquid-helium temperatures (2–10 K). At temperatures below ~4.5 K the thermal expansion of fullerite C60 becomes negative, in agreement with the previous results on polycrystalline materials. A qualitative explanation of the results is proposed.

  • 43. Aleksandrovskii, A. N.
    et al.
    Gavrilko, V.G.
    Esel'son, V.B.
    Manzhelii, V. G.
    Udovidchenko, B.G.
    Maletskiy, V.P.
    Sundqvist, Bertil
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Effect of argon on the thermal expansion of fullerite C60 at helium temperatures2001In: Low temperature physics (Woodbury, N.Y., Print), ISSN 1063-777X, E-ISSN 1090-6517, Vol. 27, no 3, p. 245-246Article in journal (Refereed)
    Abstract [en]

    The linear thermal expansion of compacted Ar-doped fullerite C60(ArxC60) is investigated at 2–12 K using a dilatometric method. The thermal expansion of ArxC60 is also studied after partial desaturation of argon from fullerite. It is revealed that argon doping resulted in a considerable change of the temperature dependence of the thermal expansion of fullerite. An explanation of the observed effects is proposed.

  • 44. Aleksandrovskii, A.N.
    et al.
    Bakai, A.S.
    Cassidy, D.
    Dolbin, A.V.
    Esel'son, V.B.
    Gadd, G.E.
    Gavrilko, V.G.
    Manzhelii, V.G.
    Moricca, S.
    Sundqvist, Bertil
    Umeå University, Faculty of Science and Technology, Physics.
    On the polyamorphism of fullerite-based orientational glasses.2005In: Low Temperature Physics, ISSN 1063-777X, Vol. 31, no 5, p. 429-444Article in journal (Refereed)
    Abstract [en]

    The dilatometric investigation in the temperature range of 2–28 K shows that a first-order

    polyamorphous transition occurs in the orientational glasses based on C60 doped with H2, D2 and

    Xe. A polyamorphous transition was also detected in C60 doped with Kr and He. It is observed that

    the hysteresis of thermal expansion caused by the polyamorphous transition (and, hence, the transition

    temperature) is essentially dependent on the type of doping gas. Both positive and negative

    contributions to the thermal expansion were observed in the low-temperature phase of the glasses.

    The relaxation time of the negative contribution occurs to be much longer than that of the positive

    contribution. The positive contribution is found to be due to phonon and libron modes, whilst the

    negative contribution is attributed to tunneling states of the C60 molecules. The characteristic

    time of the phase transformation from the low-T phase to the high-T phase has been found for the

    C60–H2 system at 12 K. A theoretical model is proposed to interpret these observed phenomena.

    The theoretical model proposed, includes a consideration of the nature of polyamorphism in

    glasses, as well as the thermodynamics and kinetics of the transition. A model of noninteracting

    tunneling states is used to explain the negative contribution to the thermal expansion. The experimental

    data obtained is considered within the framework of the theoretical model. From the theoretical

    model the order of magnitude of the polyamorphous transition temperature has been estimated.

    It is found that the late stage of the polyamorphous transformation is described well by the

    Kolmogorov law with an exponent of n = 1. At this stage of the transformation, the two-dimensional

    phase boundary moves along the normal, and the nucleation is not important.

  • 45. Aleksandrovskii, A.N.
    et al.
    Gavrilko, V.G.
    Esel'son, V.B.
    Manzhelii, V. G.
    Udovidchenko, B.G.
    Maletskiy, V.P.
    Sundqvist, Bertil
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Thermal expansion of fullerite C60 alloyed with argon and neon2001In: Low temperature physics (Woodbury, N.Y., Print), ISSN 1063-777X, E-ISSN 1090-6517, Vol. 27, no 12, p. 1033-1036Article in journal (Refereed)
    Abstract [en]

    The linear thermal expansion of compacted fullerite C60 alloyed with argon (ArxC60) and neon (NexC60) are investigated by a dilatometric method. The experimental temperature is 2–12 K. In the same temperature interval the thermal expansion of ArxC60 and NexC60 are examined after partial desaturation of the gases from fullerite. It is found that Ar and Ne alloying affects the temperature dependence of the thermal expansion coefficient of C60 quite appreciably. The libration and translation contributions to the thermal expansion of pure C60 are separated. The experimental results on the thermal expansion are used to obtain the Debye temperature of pure C60. The effects observed are tentatively interpreted.

  • 46.
    Algers, Björn
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Stereo Camera Calibration Accuracy in Real-time Car Angles Estimation for Vision Driver Assistance and Autonomous Driving2018Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    The automotive safety company Veoneer are producers of high end driver visual assistance systems, but the knowledge about the absolute accuracy of their dynamic calibration algorithms that estimate the vehicle’s orientation is limited.

    In this thesis, a novel measurement system is proposed to be used in gathering reference data of a vehicle’s orientation as it is in motion, more specifically the pitch and roll angle of the vehicle. Focus has been to estimate how the uncertainty of the measurement system is affected by errors introduced during its construction, and to evaluate its potential in being a viable tool in gathering reference data for algorithm performance evaluation.

    The system consisted of three laser distance sensors mounted on the body of the vehicle, and a range of data acquisition sequences with different perturbations were performed by driving along a stretch of road in Linköping with weights loaded in the vehicle. The reference data were compared to camera system data where the bias of the calculated angles were estimated, along with the dynamic behaviour of the camera system algorithms. The experimental results showed that the accuracy of the system exceeded 0.1 degrees for both pitch and roll, but no conclusions about the bias of the algorithms could be drawn as there were systematic errors present in the measurements.

    Download full text (pdf)
    fulltext
  • 47.
    Al-Hayali, Asifa
    Umeå University, Faculty of Science and Technology, Department of Physics.
    Characterization of ion-irradiation-induced defects in graphite by Raman and Atomic Force Microscopy2013Independent thesis Advanced level (degree of Master (Two Years)), 20 credits / 30 HE creditsStudent thesis
    Abstract [en]

    Graphite is an interesting prototype material for ion implantation studies because of the anisotropy in its physical and structural properties; In particular, due to the layered nature of the graphite lattice, the processes of amorphization and recrystallization (graphitization) of the implanted region are conceptually different from that observed in commonly studied materials. Since ion implantation provides a controlled method for the introduction of lattice defects which can be subsequently annealed, this technique provides fundamental information on the unique crystalline regrowth (graphitization)process of this highly anisotropic material. The structure of ion‐irradiated HOPG has also been studied, and drawing inspiration from this, the crystallite size is fundamental in these novel properties in carbon. The bombarded graphite (with H+ and He ions), diamagnetic graphite, were performed using a Renishaw Raman microscope with a 514.5 nm Ar‐ion laser. The work includes the following parts:

    1. Raman spectroscopy (measurements, spectra treatment with Origin and LabFit program, interpretation based on available literature).

    2. Atomic force microscopy, interpretation with the SPIP software.

    3. TRIM software simulation ion tracks in the sample.

  • 48.
    Ali, Muhammad
    Umeå University, Faculty of Science and Technology, Department of Physics.
    RAMAN CHARACTERIZATION OF STRUCTURAL PROPERTIES OF THERMALLY MODIFIED NANOGRAPHITE2015Independent thesis Advanced level (degree of Master (Two Years)), 40 credits / 60 HE creditsStudent thesis
    Abstract [en]

    Raman spectroscopy is highly sensitive to study the structural properties of nanographite (NG) materials. An experiment was conducted to assess the spectrum of multi-shell nanographite at different temperature and laser treatments. Four samples with different temperature were used. The range of temperature used was 1500-1650 oC. All samples were subjected to different laser treatments like 488, 514, 633 and 785 nm respectively. The spectrum of nanographite was observed by using the Raman spectroscopy. The 1st and 2nd order spectra of NG were evaluated by using the Voigt analysis. The variations in the intensities of D and G bands were analyzed. The decrease of D band width with heat treatment was observed. The peak 1523 cm-1 exhibited more and more reduction with increase in temperature treatments. Temperature induced the conversion of nanodiamond to nanographite.

    Download full text (pdf)
    fulltext
  • 49. Ali, S
    et al.
    Moslem, WM
    Shukla, Padma Kant
    Umeå University, Faculty of Science and Technology, Department of Physics. Institut für Theoretische Physik IV, Fakultät für Physik und Astronomie, Ruhr-Universität Bochum, D-44780 Bochum, Germany; Max-Planck Institut für extraterrestrische Physik, D-85741 Garching, Germany; GoLP/Instituto Superior Técnico, 1049-001 Lisbon, Portugal; CCLRC Centre for Fundamental Physics, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon 0X11 0QX, UK; SUPA Department of Physics, University of Strathclyde, Glasgow G 40NG, UK.
    Wake potential with mobile positive/negative ions in multicomponent dusty plasmas2008In: Physics Letters A, ISSN 0375-9601, E-ISSN 1873-2429, Vol. 372, no 44, p. 6650-6652Article in journal (Refereed)
    Abstract [en]

    We employ the test charge approach to calculate the electrostatic potential for a test charge in a multicomponent dusty plasma, whose constituents are the Boltzmann distributed electrons, mobile positive and negative ions, and immobile positive/negative charged dust particles. By using the modified dielectric constant of the dust-ion-acoustic (DIA) waves, the Debye screening and wake potentials are obtained. It is found that the presence of mobile negative ions significantly modify the DIA speed and the wake potential. The present results are relevant to polar mesosphere and microelectronic in the context of charged particle attraction and repulsion.

  • 50. Ali, S
    et al.
    Shukla, Padma K
    Umeå University, Faculty of Science and Technology, Department of Physics. Institut für Theoretische Physik IV, Fakultät für Physik und Astronomie, Ruhr-Universität Bochum, D-44780 Bochum, Germany; Max-Planck Institut für extraterrestrische Physik, D-85741 Garching, Germany, GoLP/Instituto Superior Técnico, 1049-001 Lisbon, Portugal, Centre for Fundamental Physics, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon 0X11 0QX, United Kingdom, and Department of Physics, University of Strathclyde, Glasgow, Scotland, United Kingdom .
    Dust acoustic solitary waves in a quantum plasma2006In: Physics of Plasmas, ISSN 1070-664X, E-ISSN 1089-7674, Vol. 13, no 2, article id 022313Article in journal (Refereed)
    Abstract [en]

    By employing one-dimensional quantum hydrodynamic (QHD) model for a three species quantum plasma, nonlinear properties of dust acoustic solitary waves are studied. For this purpose a Korteweg-de Vries (KdV) equation is derived, incorporating quantum corrections. The quantum mechanical effects are also examined numerically both on the profiles of the amplitude and the width of dust acoustic solitary waves. It is found that the amplitude remains constant but the width shrinks for different values of a dimensionless electron quantum parameter H-e=root(Z(d0)h(2)omega(2)(pd))/m(e)m(d)C(d)(4), where Z(d0) is the dust charge state, h is the Planck constant divided by 2 pi, omega(pd) is the dust plasma frequency, m(e) (m(d)) is the electron (dust) mass, and C-d is the dust acoustic speed.

1234567 1 - 50 of 3028
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf