umu.sePublications
Change search
Refine search result
1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Buckland, Philip I.
    et al.
    Umeå University, Faculty of Arts, Department of historical, philosophical and religious studies, Environmental Archaeology Lab.
    Hammarlund, Dan
    Lund University.
    Hjärthner-Holdar, Eva
    Swedish National Historical Museums.
    Lidén, Kerstin
    Stockholm University.
    Lindahl, Anders
    Lund University.
    Palm, Fredrik
    Umeå University, Faculty of Arts, Humlab.
    Possnert, Göran
    Uppsala University.
    The Strategic Environmental Archaeology Database: a resource for international, multiproxy and transdisciplinary studies of environmental and climatic change2015Conference paper (Refereed)
    Abstract [en]

    Climate and environmental change are global challenges which require global data and infrastructure to investigate. These challenges also require a multi-proxy approach, integrating evidence from Quaternary science and archaeology with information from studies on modern ecology and physical processes among other disciplines. The Strategic Environmental Archaeology Database (SEAD http://www.sead.se) is a Swedish based international research e-infrastructure for storing, managing, analysing and disseminating palaeoenvironmental data from an almost unlimited number of analysis methods. The system currently makes available raw data from over 1500 sites (>5300 datasets) and the analysis of Quaternary fossil insects, plant macrofossils, pollen, geochemistry and sediment physical properties, dendrochronology and wood anatomy, ceramic geochemistry and bones, along with numerous dating methods. This capacity will be expanded in the near future to include isotopes, multi-spectral and archaeo-metalurgical data. SEAD also includes expandable climate and environment calibration datasets, a complete bibliography and extensive metadata and services for linking these data to other resources. All data is available as Open Access through http://qsead.sead.se and downloadable software.

     

    SEAD is maintained and managed at the Environmental Archaeology Lab and HUMlab at Umea University, Sweden. Development and data ingestion is progressing in cooperation with The Laboratory for Ceramic Research and the National Laboratory for Wood Anatomy and Dendrochronology at Lund University, Sweden, the Archaeological Research Laboratory, Stockholm University, the Geoarchaeological Laboratory, Swedish National Historical Museums Agency and several international partners and research projects. Current plans include expanding its capacity to serve as a data source for any system and integration with the Swedish National Heritage Board's information systems.

     

    SEAD is partnered with the Neotoma palaeoecology database (http://www.neotomadb.org) and a new initiative for building cyberinfrastructure for transdisciplinary research and visualization of the long-term human ecodynamics of the North Atlantic funded by the National Science Foundation (NSF).

  • 2.
    Carlborg, Markus
    et al.
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Backman, Rainer
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Landälv, Ingvar
    Characterization of spent spinel-based refractory lining from a 3 MW black liquor gasifierManuscript (preprint) (Other academic)
    Abstract [en]

    Black liquor gasification is dependent on minimizing heat loss to the surroundings and thus needs to be well insulated. In combination with the high temperature and basic black liquor, a very corrosive environment is created on the hot face of such a reactor. Therefore the wall system is required to be chemically and thermally stable at the same time as it has insulating properties. These cannot easily be combined in the same material and therefore layers with different properties can be used in combination. Penetration of species through the lining can lead to further reactions with other construction materials, less suited for chemical resistance, corrosion of the pressure shell is an example with catastrophic consequences. This paper investigates two castable and one fused cast spinel (MgAl2O4) refractory after about 1 600 hours, and one fused cast material used for 15 000 hours of operation in a 3 MWth black liquor gasifier. Infiltration of Na, followed by destruction of microstructure, and extensive formation of NaAlO2 was observed throughout the whole castable materials, while it was mainly restricted to the hot face of the fused cast materials. Formation of NaAlO2 leads to a volumetric expansion which eventually lead to an increased pressure on the steel shell. In addition, the expansion of the bricks can cause stress and by that spallation and material loss.

  • 3.
    Carlborg, Markus
    et al.
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Boström, Dan
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Kannabiran, Sankar
    Höganäs Bjuf AB.
    Backman, Rainer
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Interaction between ash forming elements in woody biomass and two high alumina refractories part 1: effects on morphology and elemental distributionManuscript (preprint) (Other academic)
    Abstract [en]

    To gain more knowledge about possibly destructive effects of ash-forming elements in woody biomass on refractory materials in entrained flow gasification, an exposure study was performed on two high alumina refractories. The materials, a pre-fired castable consisting of about 63 weight-% Al2O3, and a phosphate bonded brick with 83 weight-% Al2O3 was exposed to synthetic ash mixtures at 1050°C and 1 atm CO2 for 7 days. This paper presents distribution of ash-forming elements and morphology of the samples microstructure, while identification and distribution of crystalline compounds is presented in a separate paper. In the samples, potassium (K) had infiltrated the materials and reacted with different components, while calcium (Ca) did not seem to have any direct effect during these conditions. The matrix of the castable absorbed much K, became clogged and produced a distinct border between reacted and unaffected matrix. The coarser matrix of the phosphate bonded brick retained much of its porosity and had ash transported further into the material without a clear distinction between reacted and unaffected matrix. Grains with >30 atomic-% Si, formed a layer enriched in K, with a thickness up to 40 µm and cracks propagating through it. Grains mainly consisting of Al2O3 seemed unaffected by the exposure. When the ash was rich in SiO2, a melt was produced that restricted the attack on the refractories to the surface and coarser pores.

  • 4.
    Carlborg, Markus
    et al.
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Boström, Dan
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Kannabiran, Sankar
    Höganäs Bjuf AB.
    Backman, Rainer
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Interaction between ash forming elements in woody biomass and two high alumina refractories part 2: transformation of crystalline compoundsManuscript (preprint) (Other academic)
    Abstract [en]

    Two high alumina refractories, one brick and one pre fired castable was exposed to pure K2CO3, K2CO3 + CaCO3, and K2CO3 + CaCO3 + SiO2 at 1050°C and a CO2 atmosphere. A stratified investigation of crystalline phases was made with polycrystalline x-ray diffraction, and thermodynamic equilibrium calculations were performed to explore possible formation paths. A monoclinic polymorph of KAlSiO4 was formed to a large extent in both materials exposed to pure K2CO3. Throughout the affected part of the castable and a small layer close to the surface of the brick, a solid solution between KAlO2 and KAlSiO4 formed, K1-xAl1-xSixO2, x = 0.19. The affected area of the castable had 30-50 %wt new phases and made a sharp transition to unaffected material. The concentration of new phases in the brick was decreasing at an even rate from about 40 to 15%wt throughout the whole material thickness of 14 mm. Exposure to K2CO3 and CaCO3 showed the same phases and behavior, but no Ca-bearing phases could be detected. The mixture containing K2CO3, CaCO3 and SiO2 did not penetrate far into the material but formed the same phases in the affected areas. Wollastonite (CaSiO3) formed in the slag on top of these materials. The major mechanism for formation of new phases is suggested to be the formation of an initial melt composed of K2O and SiO2. This liquid is then dissolving refractory components and forms a liquid in equilibrium with KAlSiO4 and K1-xAl1-xSixO2.

1 - 4 of 4
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf