umu.sePublications
Change search
Refine search result
1 - 16 of 16
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Beijer, Kristina
    et al.
    Bjorlenius, Berndt
    Shaik, Siraz
    Lindberg, Richard H.
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Brunstrom, Bjorn
    Brandt, Ingvar
    Removal of pharmaceuticals and unspecified contaminants in sewage treatment effluents by activated carbon filtration and ozonation: Evaluation using biomarker responses and chemical analysis2017In: Chemosphere, ISSN 0045-6535, E-ISSN 1879-1298, Vol. 176, p. 342-351Article in journal (Refereed)
    Abstract [en]

    Traces of active pharmaceutical ingredients (APIs) and other chemicals are demonstrated in effluents from sewage treatment plants (STPs) and they may affect quality of surface water and eventually drinking water. Treatment of effluents with granular activated carbon (GAC) or ozone to improve removal of APIs and other contaminants was evaluated at two Swedish STPs, Kappala and Uppsala (88 and 103 APIs analyzed). Biomarker responses in rainbow trout exposed to regular and additionally treated effluents were determined. GAC and ozone treatment removed 87-95% of the total concentrations of APIs detected. In Kappala, GAC removed 20 and ozonation (7 g O-3/m(3)) 21 of 24 APIs detected in regular effluent. In Uppsala, GAC removed 25 and ozonation (5.4 g O-3/m(3)) 15 of 25 APIs detected in effluent. GAC and ozonation also reduced biomarker responses caused by unidentified pollutants in STP effluent water. Elevated ethoxyresorufin-O-deethylase (EROD) activity in gills was observed in fish exposed to effluent in both STPs. Gene expression analysis carried out in Kappala showed increased concentrations of cytochrome P450 (CYP1A5 and CYP1C3) transcripts in gills and of CYP1As in liver of fish exposed to effluent. In fish exposed to GAC- or ozone-treated effluent water, gill EROD activity and expression of CYP1As and CYP1C3 in gills and liver were generally equal to or below levels in fish held in tap water. The joint application of chemical analysis and sensitive biomarkers proved useful for evaluating contaminant removal in STPs with new technologies.

  • 2. Davidsson, A.
    et al.
    Kjerstadius, H.
    Haghighatafshar, S.
    Fick, Jerker
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Olsson, M.
    Wachtmeister, H.
    Eriksson, E.
    Jansen, J. la Cour
    Effect of anaerobic digestion at 35, 55 and 60 degrees C on pharmaceuticals and organic contaminants2014In: Water Science and Technology, ISSN 0273-1223, E-ISSN 1996-9732, Vol. 69, no 6, p. 1282-1288Article in journal (Refereed)
    Abstract [en]

    The application of treated sewage sludge on farmland is a suggested method for recycling nutrients and reducing demand for commercial fertilizer. However, sludge needs to be safe from possible contaminants which can cause acute and long-term health and environmental problems. Residual pharmaceuticals and organic contaminants are mentioned as emerging threats since wastewater treatment plants are not designed to degrade these substances. The aim of this study was to screen and evaluate the presence, and reduction, of pharmaceuticals and polycyclic aromatic hydrocarbons (PAHs) during anaerobic digestion of mixed primary and waste-activated sludge at 35, 55 and 60 degrees C and during pasteurization at 70 degrees C. The study showed the difficulty of analysing pharmaceutical compounds in low concentrations in the sludge matrix. No general reduction of these compounds was seen during treatment, but for individual substances some reduction occured. The PAHs were generally not reduced during digestion or pasteurization, but for three substances (indeno[1,2,3-cd]pyreneand dibenzo[a,h] anthracene (analysed together) and benzo [g,h,i] perylene) reduction (up to 60%) during digestion was seen. Digestion at 35 and 55 degrees C resulted in about the same order of reduction of the three individual PAHs, which was higher than for digestion at 60 degrees C.

  • 3. Faleye, A. C.
    et al.
    Adegoke, A. A.
    Ramluckan, K.
    Fick, Jerker
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Bux, F.
    Stenstrom, T. A.
    Concentration and reduction of antibiotic residues in selected wastewater treatment plants and receiving waterbodies in Durban, South Africa2019In: Science of the Total Environment, ISSN 0048-9697, E-ISSN 1879-1026, Vol. 678, p. 10-20Article in journal (Refereed)
    Abstract [en]

    In the province of KwaZulu-Natal, South Africa the incidence of resistant tuberculosis, upper respiratory tract diseases as well as diarrhoeal and parasitic infections is high. Treatment of these diseases with antibiotics is partly reflected by the excretion of the respective antibiotics and their subsequent occurrence in wastewater. Their quantitative reduction in wastewater treatment reflects their potential environmental as well as human impact, the latter due to the use of the recipient water for domestic purposes and for irrigation. Information of the occurrence and reduction of different classes of antibiotics in wastewater treatment is sparse, especially the particle bound fraction of these. Due to this, analyses of aqueous and particle bound antibiotics in untreated wastewater of four selected wastewater treatment plants (WWTPs) and their receiving water bodies was carried out in Durban, South Africa. The treatment step especially considered was the biological one, represented by activated sludge and trickling filters. The treatment further included secondary clarifiers and final chlorine disinfection. Composite samples were collected during the period February 2017 to May 2017 and analysed with online solid phase extraction - high performance liquid chromatography mass spectrometry (SPE-HPLC-MS). For the 13 assessed antibiotics, the limit of detection (LOD) and the limit of quantification (LOQ) ranged from 0.07 to 0.33 ng L-1 and 0.23 to 1.09 ng L-1 respectively, while the total percentage recovery was in the range of 51 to 111%. The percentage of individual antibiotics bound to the particulate fraction normally lost by sample (influent) filtration, if not analysed in parallel, was in the range of 2.6%-97.3% (n = 32). In this fraction (sludge from centrifuge sample), the concentration of bound antibiotics of all the target antibiotics were detected in the influent of all WWTP in concentration ranges between 1.3 ng L-1 (Azithromycin; AZI) to 81,748 ng(-1) (Ciprofloxacin; CIP). The antibiotics with the highest median concentrations in receiving water bodies of the respective WWTP were: Sulfamethoxazole; SUL (239 ng L-1) WWTP "K", Ciprofloxacin; CIP (708 ng L-1) WWTP "S" and Albendazole; ALB (325 ng L-1 and 683 ng L-1) WWTP "P" and "I" respectively.

    The overall percentage removal efficiency for the four WWTPs ranged from 21% to 100%. The biological treatment steps, activated sludge and trickling filters, were effective in removing antibiotics especially with the trickling filter and the impact of the sedimentation stage after activated sludge treatment. (C) 2019 Elsevier B.V. All rights reserved.

  • 4.
    Fedorova, Ganna
    et al.
    Umeå University, Faculty of Science and Technology, Department of Chemistry. University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Vodnany, Czech Republic.
    Grabic, Roman
    Nyhlen, Jonas
    Järhult, Josef D.
    Söderström, Hanna
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Fate of three anti-influenza drugs during ozonation of wastewater effluents: degradation and formation of transformation products2016In: Chemosphere, ISSN 0045-6535, E-ISSN 1879-1298, Vol. 150, p. 723-730Article in journal (Refereed)
    Abstract [en]

    Anti-influenza drugs constitute a key component of pandemic preparedness plans against influenza. However, the occurrence of such drugs in water environments, the potential of resistance development in the natural hosts, and the risk for transmission of antiviral resistance to humans call for measures to increase removal in wastewater treatment plants (WWTPs). In this study, removal of three anti-influenza drugs; amantadine (AM), oseltamivir carboxylate (OC) and zanamivir (ZA), and formation/removal of their transformation products during ozonation of wastewater effluents from two Swedish WWTPs in Uppsala and Stockholm were studied. The removal profile of target antivirals and formation/removal of their transformation products were studied by liquid chromatography/high resolution mass spectrometry. 3.5 h of ozone exposure (total dose of ozone 5.95 g) led to complete removal of the three anti-influenza drugs with a degradation in the following order ZA > OC > AM. Two, five and one transformation products were identified and semi-quantified for AM, OC and ZA, respectively. Increasing and later decreasing transformation products concentration followed the decrease in concentration of target compounds. All transformation products detected, except one of AM in wastewater from Stockholm WWTP, were removed at the end of the experiment. The removal efficiency was higher for all studied compounds in wastewater from Uppsala WWTP, which had lower TOC and COD values, less phosphorus, and also higher pH in the water. Ozonation thus offers multiple benefits through its potential to degrade influenza antivirals, hence decrease the risk of environmental resistance development, in addition to degrading other pharmaceuticals and resistant microorganisms.

  • 5. Flach, Carl-Fredrik
    et al.
    Genheden, Maja
    Fick, Jerker
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Larsson, D. G. Joakim
    A comprehensive screening of Escherichia coli isolates from Scandinavia's largest sewage treatment plant indicates no selection for antibiotic resistance2018In: Environmental Science and Technology, ISSN 0013-936X, E-ISSN 1520-5851, Vol. 52, no 19, p. 11419-11428Article in journal (Refereed)
    Abstract [en]

    There is concern that sewage treatment plants (STPs) serve as hotspots for emergence and selection of antibiotic resistant bacteria. However, field studies investigating resistance selection by comparing bacterial populations in influents and effluents have produced variable and sometimes contradictive results. Also, large taxonomic changes between influents and effluents make interpretation of studies measuring relative gene abundances ambiguous. The aim here was to investigate whether within-species selection occurs by conducting a comprehensive screening of Escherichia coli isolated from composite influent and effluent samples collected at Scandinavia's largest STP, accompanied by analyses of antibiotics residues. In total, 4028 isolates, collected on eight occasions during 18 months, were screened for resistance to seven antibiotics. Although differences in proportions of resistant E. coli between influent and effluent samples were detected for a few antibiotics on two occasions, aggregated data over time showed no such differences for any of the investigated antibiotics. Neither was there any enrichment of multiresistant or extended-spectrum beta-lactamase-producing isolates through the treatment process. Despite some antibiotics were detected at or close to concentrations predicted to provide some selective pressure, field observations of resistance profiles in E. coli do not provide support for systematic selection in the investigated STP.

  • 6. Gros, Meritxell
    et al.
    Blum, Kristin
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Jernstedt, Henrik
    Renman, Gunno
    Rodríguez-Mozaz, Sara
    Haglund, Peter
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Andersson, Patrik
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Wiberg, Karin
    Ahrens, Lutz
    Screening and prioritization of micropollutants in wastewaters from on-site sewage treatment facilities2017In: Journal of Hazardous Materials, ISSN 0304-3894, E-ISSN 1873-3336, Vol. 328, p. 37-45Article in journal (Refereed)
    Abstract [en]

    A comprehensive screening of micropollutants was performed in wastewaters from on-site sewage treatment facilities (OSSFs) and urban wastewater treatment plants (WWTPs) in Sweden. A suspect screening approach, using high resolution mass spectrometry, was developed and used in combination with target analysis. With this strategy, a total number of 79 micropollutants were successfully identified, which belong to the groups of per- and polyfluoroalkyl substances (PFASs), pesticides, phosphorus-containing flame retardants (PFRs) and pharmaceuticals and personal care products (PPCPs). Results from this screening indicate that concentrations of micropollutants are similar in influents and effluents of OSSFs and WWTPs, respectively. Removal efficiencies of micropollutants were assessed in the OSSFs and compared with those observed in WWTPs. In general, removal of PFASs and PFRs was higher in package treatment OSSFs, which are based on biological treatments, while removal of PPCPs was more efficient in soil bed OSSFs. A novel comprehensive prioritization strategy was then developed to identify OSSF specific chemicals of environmental relevance. The strategy was based on the compound concentrations in the wastewater, removal efficiency, frequency of detection in OSSFs and on in silico based data for toxicity, persistency and bioaccumulation potential.

  • 7.
    Kozyatnyk, Ivan
    et al.
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Haglund, Peter
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Lövgren, Lars
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Tysklind, Mats
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Gustafsson, A.
    MoRe Research AB, Örnsköldsvik, Sweden.
    Törneman, Niklas
    SWECO, Malmö, Sweden.
    Evaluation of barrier materials for removing pollutants from groundwater rich in natural organic matter2014In: Water Science and Technology, ISSN 0273-1223, E-ISSN 1996-9732, Vol. 70, no 1, p. 32-39Article in journal (Refereed)
    Abstract [en]

    Permeable barriers are used for passive remediation of groundwater and can be constructed from a range of materials. The optimal material depends on the types of contaminants and physicochemical parameters present at the site, as well as the hydraulic conductivity, environmental safety, availability, cost and long-term stability of the material itself. The aim of the presented study was to test a number of materials for their ability to remove heavy metals and organic pollutants from groundwater with a high (140 mg L-1) content of natural organic matter (NOM). The following materials were included in the study: sand, peat, fly ash, iron powder, lignin and combinations thereof. Polluted water was fed into glass columns loaded with each sorbent and the contaminant removal efficiency of the material was evaluated through chemical analysis of the percolate. Materials based on fly ash and zero-valent iron were found to be the most effective for heavy metal removal, while fly ash and peat were the most effective for removing aliphatic compounds. Filtration through lignin and peat led to leaching of NOM. Although the leaching decreased over time, it remained high throughout the experiments. The results indicate that remediation of contaminated land at disused industrial sites is a complex task that often requires the use of mixed materials or a minimum of two sequential barriers.

  • 8.
    Kozyatnyk, Ivan
    et al.
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Lövgren, Lars
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Tysklind, Mats
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Haglund, Peter
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Multivariate assessment of barriers materials for treatment of complex groundwater rich in dissolved organic matter and organic and inorganic contaminants2017In: Journal of Environmental Chemical Engineering, ISSN 2160-6544, E-ISSN 2213-3437, Vol. 5, no 4, p. 3075-3082Article in journal (Refereed)
    Abstract [en]

    This study focused on the challenges of treating groundwater rich in dissolved organic matter and contains both heavy metals and organic pollutants. Activated carbon, fly ash, lignite, peat, torrefied organic material and zero-valent iron were tested as prospective materials for permeable barriers. Removal of different pollutants was analyzed using coefficients of the Freundlich equation for adsorption isotherms. Principal components analysis was used to visualize similarities and differences in pollutant removal efficiency and sorbent capacity between barrier materials. Fly ash, iron (aerobic conditions) and activated carbon were found to be promising materials for dissolved organic matter removal. Fly ash was the most effective material for metal removal, and fly ash, activated carbon and peat were the most effective materials for removal of organic contaminants. Thus, fly ash shows the most potential for simultaneous removal of metals and organic pollutants. However, it has limited capacity for removing neutral halogenated aromatic compounds. For these, zero-valent iron (aerobic conditions) has greater capacity, probably because of the formation of a porous layer of iron oxyhydroxide. In summary, batch adsorption experiments followed by principal components analysis evaluation of the results are useful tools for selecting suitable materials for treatment of groundwater contaminated with multiple organic and inorganic pollutants.

  • 9.
    Melin, Mikael
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Konserveringsmetoder mot korrosion på vattensidan av hetvatten pannor: Preservation methods against corrosion at the waterside of hot water boilers2017Independent thesis Advanced level (professional degree), 20 credits / 30 HE creditsStudent thesis
    Abstract [sv]

    Rapporten redovisar en utredning av konserveringsmetoder för vattensidan under stilleståndsperioder av ett värmeverk bestående av fem hetvattenpannor med ett gemensamt ångnät. Syftet var att utvärdera olika metoder för att motverka korrosion då pannorna inte är i drift. Konserveringsmetoderna som utreddes och jämfördes internt var konservering med en kvävgaskudde, ångkudde, torrläggning och en kemisk lösning. Att utreda metoderna innebar att uppskatta dess kostnad ekonomiskt genom att beräkna en årskostnad. För att besvara hur effektivt deras skydd mot korrosion är användes litteraturens referenser och teoretiska samband för att uppskatta syrehalten i matarvattnet. För att kunna göra en realistisk jämförelse mellan metoderna har den avgivna effekten för värmeverkets pannor under driftåret 2016 använts som en grund för beräkningarna. Årskostnaderna från konserveringsmetoderna är från 2016 års driftdata av värmeverket. En kvävgaskudde med en renhet av 99,999 % kan resultera i en syrehalt av 9,6 ppb för matarvattnet och har en total årskostnad av 77 300 SEK. En ångkudde har potentialen att bevara vattnet i princip syrefritt och har en total årskostnad av 809 000 SEK med en extern elpanna för ångproduktion. Att torrlägga pannorna är bara möjligt under vissa perioder av året dock skulle en total årskostnad av eldriften för att hålla pannorna torra motsvara en kostnad av 17 500 SEK. Metoden med en kemisk lösning hade en totalårskostnad av 1 640 000 SEK. Baserat på tillgänglig information och utförda antaganden är slutsatsen att värmeverket ifråga rekommenderas att upphöra med en kemisk konserveringsmetod och övergå till en kvävgaskudde som konserveringsmetod mot korrosion då pannorna inte är i drift.

  • 10. Osundeko, Olumayowa
    et al.
    Ansolia, Preeti
    Gupta, Sanjay Kumar
    Bag, Pushan
    Umeå University, Faculty of Science and Technology, Department of Plant Physiology. Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC).
    Bajhaiya, Amit K.
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Promises and challenges of growing microalgae in wastewater2019In: Water conservation, recycling and reuse: issues and challenges / [ed] Rajeev Pratap Singh, Alan S. Kolok, Shannon L. Bartelt-Hunt, Singapore: Springer, 2019, p. 29-53Chapter in book (Refereed)
    Abstract [en]

    Microalgae have been theoretically described as a sustainable feedstock for biofuel production. However, there are still some concerns and obstacles that need to be overcome in order to translate the theoretical promise into commercial and economic success. These obstacles include a high requirement for nutrients and sustainable water source and the identification of affordable cultivation conditions. It has been suggested that growing microalgae in wastewater can potentially offset some of these obstacles. Microalgae can perform a dual role for remediation of nutrient pollutants and biomass production when grown in wastewater. However, there are huge challenges to overcome before this route can be exploited in an economically and environmentally sustainable manner. In the present chapter, the potentials and challenges of growing microalgae in wastewater and its future implications are discussed in detail.

  • 11. Singer, Andrew C
    et al.
    Järhult, Josef D
    Grabic, Roman
    Umeå University, Faculty of Science and Technology, Department of Chemistry. University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Vodnany, Czech Republic.
    Khan, Ghazanfar A
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Lindberg, Richard H
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Fedorova, Ganna
    Umeå University, Faculty of Science and Technology, Department of Chemistry. University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Vodnany, Czech Republic.
    Fick, Jerker
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Bowes, Michael J
    Olsen, Björn
    Söderström, Hanna
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Intra- and inter-pandemic variations of antiviral, antibiotics and decongestants in wastewater treatment plants and receiving rivers2014In: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 9, no 9, p. e108621-Article in journal (Refereed)
    Abstract [en]

    The concentration of eleven antibiotics (trimethoprim, oxytetracycline, ciprofloxacin, azithromycin, cefotaxime, doxycycline, sulfamethoxazole, erythromycin, clarithromycin, ofloxacin, norfloxacin), three decongestants (naphazoline, oxymetazoline, xylometazoline) and the antiviral drug oseltamivir's active metabolite, oseltamivir carboxylate (OC), were measured weekly at 21 locations within the River Thames catchment in England during the month of November 2009, the autumnal peak of the influenza A[H1N1]pdm09 pandemic. The aim was to quantify the pharmaceutical response to the pandemic and compare this to drug use during the late pandemic (March 2010) and the inter-pandemic periods (May 2011). A large and small wastewater treatment plant (WWTP) were sampled in November 2009 to understand the differential fate of the analytes in the two WWTPs prior to their entry in the receiving river and to estimate drug users using a wastewater epidemiology approach. Mean hourly OC concentrations in the small and large WWTP's influent were 208 and 350 ng/L (max, 2070 and 550 ng/L, respectively). Erythromycin was the most concentrated antibiotic measured in Benson and Oxford WWTPs influent (max = 6,870 and 2,930 ng/L, respectively). Napthazoline and oxymetazoline were the most frequently detected and concentrated decongestant in the Benson WWTP influent (1650 and 67 ng/L) and effluent (696 and 307 ng/L), respectively, but were below detection in the Oxford WWTP. OC was found in 73% of November 2009's weekly river samples (max = 193 ng/L), but only in 5% and 0% of the late-and inter-pandemic river samples, respectively. The mean river concentration of each antibiotic during the pandemic largely fell between 17-74 ng/L, with clarithromycin (max = 292 ng/L) and erythromycin (max = 448 ng/L) yielding the highest single measure. In general, the concentration and frequency of detecting antibiotics in the river increased during the pandemic. OC was uniquely well-suited for the wastewater epidemiology approach owing to its nature as a prodrug, recalcitrance and temporally-and spatially-resolved prescription statistics.

  • 12. Swietlik, Joanna
    et al.
    Laskowski, Tomasz
    Kozyatnyk, Ivan
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Adsorption of Natural Organic Matter onto the Products of Water-Pipe Corrosion2015In: Water, Air and Soil Pollution, ISSN 0049-6979, E-ISSN 1573-2932, Vol. 226, no 7, article id 225Article in journal (Refereed)
    Abstract [en]

    Natural organic matter (NOM) interaction with corrosion sediments is important because it can adversely affect the behaviour of many organic and inorganic pollutants in drinking water distribution systems. NOM accumulation onto corrosion sediments can cause serious problems for water supply, such as bacteria regrowth and deterioration of water quality. Corrosion sediments have different structures from the well-known iron oxides. The interaction among corrosion sediments and water organic matter can also differ. The main goal of this work was to understand the adsorption mechanism of the processes of NOM interaction with corrosion sediments. Fulvic acid (FA) isotherms on corrosion sediments in logarithmic coordinates of the Freundlich equation have different segments with different slopes, representing the non-adsorbed and adsorbed conditional component of the FA. The formation of structures with a molecular weight higher than the initial FA was observed. FA adsorption on corrosion sediments depends on time. Almost 60-70 % of the FA was removed during the first 10 min of contact. Such rapid adsorption indicates that FA was accumulated onto corrosion sediments mainly due to physical-chemical interaction. The pseudo-second-order kinetics model was demonstrated to better describe the adsorption of FA onto corrosion sediments than the pseudo-first-order model. External mass transfer is the limiting stage of the process of FA adsorption onto corrosion sediments. This knowledge is useful for understanding of corrosion processes and biological regrowth in water supply pipes and thus further decrease of drinking water quality.

  • 13. Wang, Huijiao
    et al.
    Mustafa, Majid
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Yu, Gang
    Östman, Marcus
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Cheng, Yi
    Wang, Yujue
    Tysklind, Mats
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Oxidation of emerging biocides and antibiotics in wastewater by ozonation and the electro-peroxone process2019In: Chemosphere, ISSN 0045-6535, E-ISSN 1879-1298, Vol. 235, p. 575-585Article in journal (Refereed)
    Abstract [en]

    This study investigated the abatement of a number of antimicrobials frequently detected in municipal wastewater by conventional ozonation and a recently developed ozone-based advanced oxidation process, the electro-peroxone (E-peroxone) process. A synthetic water and a real secondary wastewater effluent were spiked with fourteen antimicrobials, including antibiotics and biocides, and then treated by the two processes. The results show that most of the antibiotics investigated (e.g., ofloxacin, trimethoprim, norfloxacin, and ciprofloxacin) readily react with ozone (O3) and could therefore be efficiently eliminated from the water matrices by direct O3 oxidation during both processes. In contrast, most of the biocides tested in this study (e.g., clotrimazole, pentamidine, bixafen, propiconazole, and fluconazole) were only moderately reactive, or non-reactive, with O3. Therefore, these biocides were removed at considerably lower rate than the antibiotics during the two ozone-based processes, with hydroxyl radical (OH) oxidation playing an important role in their abatement mechanisms. When compared with conventional ozonation, the E-peroxone process is defined by the in situ electrogeneration of hydrogen peroxide, which considerably enhances the transformation of O3 to OH. As a result, the E-peroxone process significantly accelerated the abatement of biocides and required a considerably shorter treatment time to eliminate all of the tested compounds from the water matrices than conventional ozonation. In addition, the E-peroxone process enhanced the contributions of OH fractions to the abatement of moderately ozone reactive benzotriazoles. These results demonstrate that the E-peroxone process holds promise as an effective tertiary treatment option for enhancing the abatement of ozone-resistant antimicrobials in wastewater.

  • 14. Zhang, W.
    et al.
    Blum, Kristin M.
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Gros, M.
    Ahrens, L.
    Jernstedt, H.
    Wiberg, K.
    Andersson, P. L.
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Björlenius, B.
    Renman, G.
    Removal of micropollutants and nutrients in household wastewater using organic and inorganic sorbents2018In: Desalination and Water Treatment, ISSN 1944-3994, E-ISSN 1944-3986, Vol. 120, p. 88-108Article in journal (Refereed)
    Abstract [en]

    The efficiency of five organic and five inorganic sorbents in removing 19 organic micropollutants (MPs), phosphorus, nitrogen, and dissolved organic carbon (DOC) was tested in a two-week column experiment using household wastewater spiked with pharmaceuticals (n = 6), biocides/pesticides (n = 4), organophosphates (n = 3), a fragrance, a UV-stablizer, a food additive, a rubber additive, a plasticizer and a surfactant. Two types of granular activated carbon (GAC), two types of lignite, a pine bark product, and five mineral-based sorbents were tested. All the organic sorbents except pine bark achieved better removal efficiencies of DOC (on average, 70 +/- 27%) and MPs (93 +/- 11%) than the inorganic materials (DOC: 44 +/- 7% and MPs: 66 +/- 38%). However, the organic sorbents (i.e. GAC and xyloid lignite) removed less phosphorus (46 +/- 18%), while sorbents with a high calcium or iron content (i.e. Polonite (R) and lignite) generally removed phosphorus more efficiently (93 +/- 3%). Ammonium- nitrogen was well removed by sorbents with a pH between 7 and 9, with an average removal of 87%, whereas lignite (pH 4) showed the lowest removal efficiency (50%). Some MPs were well removed by all sorbents (>= 97%) including biocides (hexachlorobenzene, triclosan and terbutryn), organophosphates (tributylphosphate, tris-(1,3-dichloro-2-propyl) phosphate and triphenylphosphate) and one fragrance (galaxolide). The pesticide 2,6-dichlorobenzamide and the pharmaceutical diclofenac were poorly removed by the pine bark and inorganic sorbents (on average, 4%), while organic sorbents achieved high removal of these chemicals (87%).

  • 15.
    Åberg, Jan
    et al.
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Wallin, Marcus B.
    Evaluating a fast headspace method for measuring DIC and subsequent calculation of pCO(2) in freshwater systems2014In: INLAND WATERS, ISSN 2044-2041, E-ISSN 2044-205X, Vol. 4, no 2, p. 157-166Article in journal (Refereed)
    Abstract [en]

    A variety of different sampling and analysis methods are found in the literature for determining carbon dioxide (CO2) in freshwaters, methods that rarely have been evaluated or compared. Here we present an evaluation of an acidified headspace method (AHS) in which the dissolved inorganic carbon (DIC) is measured from an acidified sample and the partial pressure (pCO(2)) is calculated from DIC using pH and water temperature. We include information on practical sampling, accuracy, and precision of the DIC/pCO(2) determination and a storage test of samples. The pCO(2) determined from the AHS method is compared to that obtained from the more widely used direct headspace method (DHS) in which CO2 is equilibrated between the water and gas phases at ambient pH. The method was tested under both controlled laboratory conditions as well as wintertime field sampling. The accuracy of the DIC detection was on average 99% based on prepared standard solutions. The pCO(2) determination in lab, using the DHS method as a reference, showed no significant difference, although the discrepancy between the methods was larger in samples with <1000 mu atm. The precision of the pCO(2) determination was on average +/- 4.3%, which was slightly better than the DHS method (+/- 6.7%). In the field, the AHS method determined on average 10% higher pCO(2) than the DHS method, which was explained by the extreme winter conditions (below -20 degrees C) at sampling that affected the sampling procedure of the DHS method. Although samples were acidified to pH 2, respiration processes were still occurring (at a low rate), and we recommend that analyses are conducted within 3 days from sampling. The AHS method was found to be a robust method to determine DIC and pCO(2) in acidic to pH-neutral freshwater systems. The simple and quick sampling procedure makes the method suitable for time-limited sampling campaigns and sampling in cold climate.

  • 16.
    Östman, Marcus
    et al.
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Fick, Jerker
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Tysklind, Mats
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Detailed mass flows and removal efficiencies for biocides and antibiotics in Swedish sewage treatment plants2018In: Science of the Total Environment, ISSN 0048-9697, E-ISSN 1879-1026, Vol. 640, p. 327-336Article in journal (Refereed)
    Abstract [en]

    Antimicrobial compounds, such as biocides and antibiotics, are widely used in society with significant quantities of these chemicals ending up in sewage treatment plants (STPs). In this study, mass flows and removal efficiency in different treatment steps at three Swedish STPs were evaluated for eleven different biocides and antibiotics. Mass flows were calculated at eight different locations (incoming wastewater, water after the first sedimentation step, treated effluent, primary sludge, surplus sludge, digested sludge, dewatered digested sludge and reject water). Samples were collected for a total of nine days over three weeks. The STPs were able to remove 53-> 99% of the antimicrobial compounds and 0-64% were biodegraded on average in the three STPs. Quaternary ammonium compounds were removed from the wastewater N99%, partly through biodegradation, but 38-96% remained in the digested sludge. Chlorhexidine was not biodegraded but was efficiently removed from the wastewater to the sludge. The biological treatment step was the most important step for the degradation of the studied compounds, but also removed several compounds through the surplus sludge. Compounds that were inefficiently removed included benzotriazoles, trimethoprim and fluconazole. The study provides mass flows and removal efficiencies for several compounds that have been seldom studied. 

1 - 16 of 16
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf