umu.sePublications
Change search
Refine search result
1234567 1 - 50 of 730
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the 'Create feeds' function.
  • 1. Abbara, Aula
    et al.
    Al-Harbat, Nizar
    Karah, Nabil
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    Abo-Yahya, Bashar
    El-Amin, Wael
    Hatcher, James
    Gabbar, Omar
    Antimicrobial Drug Resistance among Refugees from Syria, Jordan2017In: Emerging Infectious Diseases, ISSN 1080-6040, E-ISSN 1080-6059, Vol. 23, no 5, 885-886 p.Article in journal (Refereed)
  • 2.
    Abdulamir, Dalia
    Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics.
    Evaluation of the Role of Histidines Regarding the Self-assembly and Fibrillar Stability of Amyloid βeta2015Independent thesis Basic level (degree of Bachelor), 10 credits / 15 HE creditsStudent thesis
  • 3. Abraham, Nabil M.
    et al.
    Liu, Lei
    Jutras, Brandon Lyon
    Yadav, Akhilesh K.
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine). Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS).
    Narasimhan, Sukanya
    Gopalakrishnan, Vissagan
    Ansari, Juliana M.
    Jefferson, Kimberly K.
    Cava, Felipe
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine). Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS).
    Jacobs-Wagner, Christine
    Fikrig, Erol
    Pathogen-mediated manipulation of arthropod microbiota to promote infection2017In: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, Vol. 114, no 5, E781-E790 p.Article in journal (Refereed)
    Abstract [en]

    Arthropods transmit diverse infectious agents; however, the ways microbes influence their vector to enhance colonization are poorly understood. Ixodes scapularis ticks harbor numerous human pathogens, including Anaplasma phagocytophilum, the agent of human granulocytic anaplasmosis. We now demonstrate that A. phagocytophilum modifies the I. scapularis microbiota to more efficiently infect the tick. A. phagocytophilum induces ticks to express Ixodes scapularis antifreeze glycoprotein (iafgp), which encodes a protein with several properties, including the ability to alter bacterial biofilm formation. IAFGP thereby perturbs the tick gut microbiota, which influences the integrity of the peritrophic matrix and gut barrier-critical obstacles for Anaplasma colonization. Mechanistically, IAFGP binds the terminal D-alanine residue of the pentapeptide chain of bacterial peptidoglycan, resulting in altered permeability and the capacity of bacteria to form biofilms. These data elucidate the molecular mechanisms by which a human pathogen appropriates an arthropod antibacterial protein to alter the gut microbiota and more effectively colonize the vector.

  • 4. Agrawal, Ganesh Kumar
    et al.
    Sarkar, Abhijit
    Agrawal, Raj
    Ndimba, Bongani Kaiser
    Tanou, Georgia
    Dunn, Michael J
    Kieselbach, Thomas
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Cramer, Rainer
    Wienkoop, Stefanie
    Chen, Sixue
    Rafudeen, Mohammed Suhail
    Deswal, Renu
    Barkla, Bronwyn J
    Weckwerth, Wolfram
    Heazlewood, Joshua L
    Renaut, Jenny
    Job, Dominique
    Chakraborty, Niranjan
    Rakwal, Randeep
    Boosting the Globalization of Plant Proteomics through INPPO: Current Developments and Future Prospects2012In: Proteomics, ISSN 1615-9853, E-ISSN 1615-9861, Vol. 12, no 3, 359-368 p.Article in journal (Refereed)
    Abstract [en]

    The International Plant Proteomics Organization (INPPO) is a non-profit-organization consisting of people who are involved or interested in plant proteomics. INPPO is constantly growing in volume and activity, which is mostly due to the realization among plant proteomics researchers worldwide for the need of such a global platform. Their active participation resulted in the rapid growth within the first year of INPPO's official launch in 2011 via its website (www.inppo.com) and publication of the 'Viewpoint paper' in a special issue of PROTEOMICS (May 2011). Here, we will be highlighting the progress achieved in the year 2011 and the future targets for the year 2012 and onwards. INPPO has achieved a successful administrative structure, the Core Committee (CC; composed of President, Vice-President, and General Secretaries), Executive Council (EC), and General Body (GB) to achieve INPPO objectives. Various committees and subcommittees are in the process of being functionalized via discussion amongst scientists around the globe. INPPO's primary aim to popularize the plant proteomics research in biological sciences has also been recognized by PROTEOMICS where a section dedicated to plant proteomics has been introduced starting January 2012, following the very first issue of this journal devoted to plant proteomics in May 2011. To disseminate organizational activities to the scientific community, INPPO has launched a biannual (in January and July) newsletter entitled 'INPPO Express: News & Views' with the first issue published in January 2012. INPPO is also planning to have several activities in 2012, including programs within the Education Outreach committee in different countries, and the development of research ideas and proposals with priority on crop and horticultural plants, while keeping tight interactions with proteomics programs on model plants such as Arabidopsis thaliana, rice, and Medicago truncatula. Altogether, the INPPO progress and upcoming activities are because of immense support, dedication, and hard work of all members of the INPPO community, and also due to the wide encouragement and support from the communities (scientific and non-scientific).

  • 5. Aguilo, Francesca
    et al.
    Avagyan, Serine
    Labar, Amy
    Sevilla, Ana
    Lee, Dung-Fang
    Kumar, Parameet
    Lemischka, Ihor R
    Zhou, Betty Y
    Snoeck, Hans-Willem
    Prdm16 is a physiologic regulator of hematopoietic stem cells.2011In: Blood, ISSN 0006-4971, E-ISSN 1528-0020, Vol. 117, no 19Article in journal (Refereed)
    Abstract [en]

    Fetal liver and adult bone marrow hematopoietic stem cells (HSCs) renew or differentiate into committed progenitors to generate all blood cells. PRDM16 is involved in human leukemic translocations and is expressed highly in some karyotypically normal acute myeloblastic leukemias. As many genes involved in leukemogenic fusions play a role in normal hematopoiesis, we analyzed the role of Prdm16 in the biology of HSCs using Prdm16-deficient mice. We show here that, within the hematopoietic system, Prdm16 is expressed very selectively in the earliest stem and progenitor compartments, and, consistent with this expression pattern, is critical for the establishment and maintenance of the HSC pool during development and after transplantation. Prdm16 deletion enhances apoptosis and cycling of HSCs. Expression analysis revealed that Prdm16 regulates a remarkable number of genes that, based on knockout models, both enhance and suppress HSC function, and affect quiescence, cell cycling, renewal, differentiation, and apoptosis to various extents. These data suggest that Prdm16 may be a critical node in a network that contains negative and positive feedback loops and integrates HSC renewal, quiescence, apoptosis, and differentiation.

  • 6.
    Aguilo, Francesca
    et al.
    Umeå University, Faculty of Medicine, Department of Medical Biosciences. Departments of Structural and Chemical Biology, Genetics and Genomic Sciences and Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
    Di Cecilia, Serena
    Walsh, Martin J
    Long Non-coding RNA ANRIL and Polycomb in Human Cancers and Cardiovascular Disease2016In: Long non-coding RNAs in human disease, Springer, 2016, Vol. 394, 29-39 p.Chapter in book (Refereed)
    Abstract [en]

    The long non-coding RNA CDKN2B-AS1, commonly referred to as the Antisense Non-coding RNA in the INK4 Locus (ANRIL), is a 3.8-kb-long RNA transcribed from the short arm of human chromosome 9 on p21.3 that overlaps a critical region encompassing three major tumor suppressor loci juxtaposed to the INK4b-ARF-INK4a gene cluster and the methyl-thioadenosine phosphorylase (MTAP) gene. Genome-wide association studies have identified this region with a remarkable and growing number of disease-associated DNA alterations and single nucleotide polymorphisms, which corresponds to increased susceptibility to human disease. Recent attention has been devoted on whether these alterations in the ANRIL sequence affect its expression levels and/or its splicing transcript variation, and in consequence, global cellular homeostasis. Moreover, recent evidence postulates that ANRIL not only can regulate their immediate genomic neighbors in cis, but also has the capacity to regulate additional loci in trans. This action would further increase the complexity for mechanisms imposed through ANRIL and furthering the scope of this lncRNA in disease pathogenesis. In this chapter, we summarize the most recent findings on the investigation of ANRIL and provide a perspective on the biological and clinical significance of ANRIL as a putative biomarker, specifically, its potential role in directing cellular fates leading to cancer and cardiovascular disease.

  • 7.
    Aguilo, Francesca
    et al.
    Umeå University, Faculty of Medicine, Department of Medical Biosciences. Icahn School of Medicine at Mount Sinai, New York.
    Li, SiDe
    Balasubramaniyan, Natarajan
    Sancho, Ana
    Benko, Sabina
    Zhang, Fan
    Vashisht, Ajay
    Rengasamy, Madhumitha
    Andino, Blanca
    Chen, Chih-hung
    Zhou, Felix
    Qian, Chengmin
    Zhou, Ming-Ming
    Wohlschlegel, James A
    Zhang, Weijia
    Suchy, Frederick J
    Walsh, Martin J
    Deposition of 5-Methylcytosine on Enhancer RNAs Enables the Coactivator Function of PGC-1α2016In: Cell reports, ISSN 2211-1247, E-ISSN 2211-1247, Vol. 14, no 3, 479-492 p.Article in journal (Refereed)
    Abstract [en]

    The Peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1α) is a transcriptional co-activator that plays a central role in adapted metabolic responses. PGC-1α is dynamically methylated and unmethylated at the residue K779 by the methyltransferase SET7/9 and the Lysine Specific Demethylase 1A (LSD1), respectively. Interactions of methylated PGC-1α[K779me] with the Spt-Ada-Gcn5-acetyltransferase (SAGA) complex, the Mediator members MED1 and MED17, and the NOP2/Sun RNA methytransferase 7 (NSUN7) reinforce transcription, and are concomitant with the m(5)C mark on enhancer RNAs (eRNAs). Consistently, loss of Set7/9 and NSun7 in liver cell model systems resulted in depletion of the PGC-1α target genes Pfkl, Sirt5, Idh3b, and Hmox2, which was accompanied by a decrease in the eRNAs levels associated with these loci. Enrichment of m(5)C within eRNA species coincides with metabolic stress of fasting in vivo. Collectively, these findings illustrate the complex epigenetic circuitry imposed by PGC-1α at the eRNA level to fine-tune energy metabolism.

  • 8.
    Aguilo, Francesca
    et al.
    Umeå University, Faculty of Medicine, Department of Medical Biosciences. Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
    Zakirova, Zuchra
    Nolan, Katie
    Wagner, Ryan
    Sharma, Rajal
    Hogan, Megan
    Wei, Chengguo
    Sun, Yifei
    Walsh, Martin J.
    Kelley, Kevin
    Zhang, Weijia
    Ozelius, Laurie J.
    Gonzalez-Alegre, Pedro
    Zwaka, Thomas P.
    Ehrlich, Michelle E.
    THAP1: Role in Mouse Embryonic Stem Cell Survival and Differentiation2017In: Stem Cell Reports, ISSN 2213-6711, Vol. 9, no 1, 92-107 p.Article in journal (Refereed)
    Abstract [en]

    THAP1 (THAP [Thanatos-associated protein] domain-containing, apoptosis-associated protein 1) is a ubiquitously expressed member of a family of transcription factors with highly conserved DNA-binding and protein-interacting regions. Mutations in THAP1 cause dystonia, DYT6, a neurologic movement disorder. THAP1 downstream targets and the mechanism via which it causes dystonia are largely unknown. Here, we show that wild-type THAP1 regulates embryonic stem cell (ESC) potential, survival, and proliferation. Our findings identify THAP1 as an essential factor underlying mouse ESC survival and to some extent, differentiation, particularly neuroectodermal. Loss of THAP1 or replacement with a disease-causing mutation results in an enhanced rate of cell death, prolongs Nanog, Prdm14, and/or Rex1 expression upon differentiation, and results in failure to upregulate ectodermal genes. ChIP-Seq reveals that these activities are likely due in part to indirect regulation of gene expression.

  • 9.
    Aguilo, Francesca
    et al.
    Umeå University, Faculty of Medicine, Department of Medical Biosciences.
    Zhang, Fan
    Sancho, Ana
    Fidalgo, Miguel
    Di Cecilia, Serena
    Vashisht, Ajay
    Lee, Dung-Fang
    Chen, Chih-Hung
    Rengasamy, Madhumitha
    Andino, Blanca
    Jahouh, Farid
    Roman, Angel
    Krig, Sheryl R
    Wang, Rong
    Zhang, Weijia
    Wohlschlegel, James A
    Wang, Jianlong
    Walsh, Martin J
    Coordination of m(6)A mRNA Methylation and Gene Transcription by ZFP217 Regulates Pluripotency and Reprogramming.2015In: Cell Stem Cell, ISSN 1934-5909, E-ISSN 1875-9777, Vol. 17, no 6Article in journal (Refereed)
    Abstract [en]

    Epigenetic and epitranscriptomic networks have important functions in maintaining the pluripotency of embryonic stem cells (ESCs) and somatic cell reprogramming. However, the mechanisms integrating the actions of these distinct networks are only partially understood. Here we show that the chromatin-associated zinc finger protein 217 (ZFP217) coordinates epigenetic and epitranscriptomic regulation. ZFP217 interacts with several epigenetic regulators, activates the transcription of key pluripotency genes, and modulates N6-methyladenosine (m(6)A) deposition on their transcripts by sequestering the enzyme m(6)A methyltransferase-like 3 (METTL3). Consistently, Zfp217 depletion compromises ESC self-renewal and somatic cell reprogramming, globally increases m(6)A RNA levels, and enhances m(6)A modification of the Nanog, Sox2, Klf4, and c-Myc mRNAs, promoting their degradation. ZFP217 binds its own target gene mRNAs, which are also METTL3 associated, and is enriched at promoters of m(6)A-modified transcripts. Collectively, these findings shed light on how a transcription factor can tightly couple gene transcription to m(6)A RNA modification to ensure ESC identity.

  • 10. Aguilo, Francesca
    et al.
    Zhou, Ming-Ming
    Walsh, Martin J
    Long noncoding RNA, polycomb, and the ghosts haunting INK4b-ARF-INK4a expression.2011In: Cancer Research, ISSN 0008-5472, E-ISSN 1538-7445, Vol. 71, no 16Article in journal (Refereed)
    Abstract [en]

    Polycomb group proteins (PcG) function as transcriptional repressors of gene expression. The important role of PcG in mediating repression of the INK4b-ARF-INK4a locus, by directly binding to the long noncoding RNA (lncRNA) transcript antisense noncoding RNA in the INK4 locus (ANRIL), was recently shown. INK4b-ARF-INK4a encodes 3 tumor-suppressor proteins, p15(INK4b), p14(ARF), and p16(INK4a), and its transcription is a key requirement for replicative or oncogene-induced senescence and constitutes an important barrier for tumor growth. ANRIL gene is transcribed in the antisense orientation of the INK4b-ARF-INK4a gene cluster, and different single-nucleotide polymorphisms are associated with increased susceptibility to several diseases. Although lncRNA-mediated regulation of INK4b-ARF-INK4a gene is not restricted to ANRIL, both polycomb repressive complex-1 (PRC1) and -2 (PRC2) interact with ANRIL to form heterochromatin surrounding the INK4b-ARF-INK4a locus, leading to its repression. This mechanism would provide an increased advantage for bypassing senescence, sustaining the requirements for the proliferation of stem and/or progenitor cell populations or inappropriately leading to oncogenesis through the aberrant saturation of the INK4b-ARF-INK4a locus by PcG complexes. In this review, we summarize recent findings on the underlying epigenetic mechanisms that link PcG function with ANRIL, which impose gene silencing to control cellular homeostasis as well as cancer development.

  • 11. Aguiló, Francesca
    et al.
    Camarero, Nuria
    Relat, Joana
    Marrero, Pedro F
    Haro, Diego
    Transcriptional regulation of the human acetoacetyl-CoA synthetase gene by PPARgamma.2010In: Biochemical Journal, ISSN 0264-6021, E-ISSN 1470-8728, Vol. 427, no 2Article in journal (Refereed)
    Abstract [en]

    In the cytosol of lipogenic tissue, ketone bodies are activated by AACS (acetoacetyl-CoA synthetase) and incorporated into cholesterol and fatty acids. AACS gene expression is particularly abundant in white adipose tissue, as it is induced during adipocyte differentiation. In order to elucidate the mechanism controlling the gene expression of human AACS and to clarify its physiological role, we isolated the human promoter, characterized the elements required to initiate transcription and analysed the expression of the gene in response to PPARgamma (peroxisome-proliferator-activated receptor gamma), an inducer of adipogenesis. We show that the human AACS promoter is a PPARgamma target gene and that this nuclear receptor is recruited to the AACS promoter by direct interaction with Sp1 (stimulating protein-1).

  • 12.
    Ahlgren, Ulf
    et al.
    Umeå University, Faculty of Medicine, Umeå Centre for Molecular Medicine (UCMM).
    Gotthardt, Martin
    Department of Nuclear Medicine, Nijmegen, Netherlands.
    Approaches for imaging islets2010In: Advances in Experimental Medicine and Biology, ISSN 0065-2598, Vol. 654, 39-57 p.Article in journal (Refereed)
    Abstract [en]

    The establishment of improved technologies for imaging of the pancreas is a key element in addressing several aspects of diabetes pathogenesis. In this respect, the development of a protocol that allows for non-invasive scoring of human islets, or islet beta-cells, is of particular importance. The development of such a technology would have profound impact on both clinical and experimental medicine, ranging from early diagnosis of diabetes to the evaluation of therapeutic regimes. Another important task is the development of modalities for high-resolution imaging of experimental animal models for diabetes. Rodent models for diabetes research have for decades been instrumental to the diabetes research community. The ability to image, and to accurately quantify, key players of diabetogenic processes with molecular specificity will be of great importance for elucidating mechanistic aspects of the disease. This chapter aims to overview current progress within these research areas.

  • 13. Akram, Neelam
    et al.
    Palovaara, Joakim
    Forsberg, Jeremy
    Lindh, Markus V.
    Milton, Debra L.
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    Luo, Haiwei
    Gonzalez, Jose M.
    Pinhassi, Jarone
    Regulation of proteorhodopsin gene expression by nutrient limitation in the marine bacterium Vibrio sp AND42013In: Environmental Microbiology, ISSN 1462-2912, E-ISSN 1462-2920, Vol. 15, no 5, 1400-1415 p.Article in journal (Refereed)
    Abstract [en]

    Proteorhodopsin (PR), a ubiquitous membrane photoprotein in marine environments, acts as a light-driven proton pump and can provide energy for bacterial cellular metabolism. However, knowledge of factors that regulate PR gene expression in different bacteria remains strongly limited. Here, experiments with Vibrio sp. AND4 showed that PR phototrophy promoted survival only in cells from stationary phase and not in actively growing cells. PR gene expression was tightly regulated, with very low values in exponential phase, a pronounced peak at the exponential/stationary phase intersection, and a marked decline in stationary phase. Thus, PR gene expression at the entry into stationary phase preceded, and could therefore largely explain, the stationary phase light-induced survival response in AND4. Further experiments revealed nutrient limitation, not light exposure, regulated this differential PR expression. Screening of available marine vibrios showed that the PR gene, and thus the potential for PR phototrophy, is found in at least three different clusters in the genus Vibrio. In an ecological context, our findings suggest that some PR-containing bacteria adapted to the exploitation of nutrient-rich micro-environments rely on a phase of relatively slowly declining resources to mount a cellular response preparing them for adverse conditions dispersed in the water column.

  • 14.
    Al-Furoukh, Natalie
    et al.
    Max-Planck-Institute for Heart and Lung Research, Ludwigstrasse 43, 61231 Bad Nauheim, Germany.
    Goffart, Steffi
    Szibor, Marten
    Wanrooij, Sjoerd
    Braun, Thomas
    Binding to G-quadruplex RNA activates the mitochondrial GTPase NOA1.2013In: Biochimica et Biophysica Acta, ISSN 0006-3002, E-ISSN 1878-2434, Vol. 1833, no 12Article in journal (Refereed)
    Abstract [en]

    NOA1 is an evolutionary conserved, nuclear encoded GTPase essential for mitochondrial function and cellular survival. The function of NOA1 for assembly of mitochondrial ribosomes and regulation of OXPHOS activity depends on its GTPase activity, but so far no ligands have been identified that regulate the GTPase activity of NOA1. To identify nucleic acids that bind to the RNA-binding domain of NOA1 we employed SELEX (Systemic Evolution of Ligands by EXponential Enrichment) using recombinant mouse wildtype NOA1 and the GTPase mutant NOA1-K353R. We found that NOA1 binds specifically to oligonucleotides that fold into guanine tetrads (G-quadruplexes). Binding of G-quadruplex oligonucleotides stimulated the GTPase activity of NOA1 suggesting a regulatory link between G-quadruplex containing RNAs, NOA1 function and assembly of mitochondrial ribosomes.

  • 15.
    Al-Furoukh, Natalie
    et al.
    Department of Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany.
    Kardon, Julia R
    Krüger, Marcus
    Szibor, Marten
    Baker, Tania A
    Braun, Thomas
    NOA1, a novel ClpXP substrate, takes an unexpected nuclear detour prior to mitochondrial import.2014In: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 9, no 7Article in journal (Refereed)
    Abstract [en]

    The mitochondrial matrix GTPase NOA1 is a nuclear encoded protein, essential for mitochondrial protein synthesis, oxidative phosphorylation and ATP production. Here, we demonstrate that newly translated NOA1 protein is imported into the nucleus, where it localizes to the nucleolus and interacts with UBF1 before nuclear export and import into mitochondria. Mutation of the nuclear localization signal (NLS) prevented both nuclear and mitochondrial import while deletion of the N-terminal mitochondrial targeting sequence (MTS) or the C-terminal RNA binding domain of NOA1 impaired mitochondrial import. Absence of the MTS resulted in accumulation of NOA1 in the nucleus and increased caspase-dependent apoptosis. We also found that export of NOA1 from the nucleus requires a leptomycin-B sensitive, Crm1-dependent nuclear export signal (NES). Finally, we show that NOA1 is a new substrate of the mitochondrial matrix protease complex ClpXP. Our results uncovered an unexpected, mandatory detour of NOA1 through the nucleolus before uptake into mitochondria. We propose that nucleo-mitochondrial translocation of proteins is more widespread than previously anticipated providing additional means to control protein bioavailability as well as cellular communication between both compartments.

  • 16.
    ALi, Kassem
    et al.
    Umeå University, Faculty of Medicine, Department of Odontology.
    Henning, Petra
    Lundberg, Pernilla
    Umeå University, Faculty of Medicine, Department of Odontology.
    Movérare-Skrtic, Sofia
    Souza, Pedro
    Lindholm, Catharina
    Lerner, Ulf
    Umeå University, Faculty of Medicine, Department of Odontology.
    Toll-like receptor induced inflammation causes local bone formationManuscript (preprint) (Other academic)
    Abstract [en]

    It is well established that inflammatory processes in the vicinity of bone often induce osteoclast formation and bone resorption. Effects on bone formation by inflammatory processes are much less studied and available information is partly contradictory. In the present study, we have assessed the effect on bone formation by locally induced inflammation. LPS from Porphyromonas gingivalis and Pam2, used as Toll-like receptor (TLR) 2 agonists, and flagellin from Salmonella typhimurium, used as TLR5 agonist, were injected subcutaneously on the top of mouse skull bones. After 1-5 days, the calvarial bones were dissected and processed either for histological or gene expression analyses. Femur was dissected for analysis with microCT and histology. At day 5, all three agonists induced bone formation on periosteal and endosteal sites, as well as in the bone marrow compartment of the calvaria. This response was seen both in close vicinity to, but also apart from, osteoclasts and bone resorption cavities. In areas close to new bone formation, abundance of proliferating cells was observed as assessed by Ki67 labelling. Gene expression analyses showed that Pam2 treatment resulted in increased mRNA expression at day 5 of genes encoding bone matrix proteins, alkaline phosphatase and of the osteoblastic transcription factors Runx2 and osterix. Robust Runx2 protein was observed in osteoblasts in areas with new bone formation. Pam2 treatment also increased the mRNA expression of cytokines in the IL-6 family, as well as of their cognate receptors and common signaling transduction subunit gp130. At day 5, the mRNA expression of Bmp2, Bmp4, Tgfb1, Lrp5, Lrp6 and Wnt7b was increased, whereas Sost was decreased. In the femur, excessive osteoclast formation and trabecular bone loss was found at day 5, but new bone formation was not observed. In conclusion, these data show that inflammatory processes not only induce osteoclastogenesis but also have the capacity to activate osteoblasts and stimulate new bone formation distinct from bone remodeling sites. Stimulation of inflammation- induced new bone formation may be due to enhanced gp130 signaling. Osteoblast activation in the inflammatory processes may also involve the BMP and WNT signaling systems.

  • 17. Ali, Yusuf
    et al.
    Diez, Juan
    Selander, Lars
    Zheng, Xiaofeng
    Edlund, Helena
    Umeå University, Faculty of Medicine, Umeå Centre for Molecular Medicine (UCMM). Diabetes Research Institute, University of Miami Leonard M. Miller School of Medicine, Miami, FL, USA.
    Berggren, Per-Olof
    The anterior chamber of the eye is a transplantation site that supports and enables visualisation of beta cell development in mice2016In: Diabetologia, ISSN 0012-186X, E-ISSN 1432-0428, Vol. 59, no 5, 1007-1011 p.Article in journal (Refereed)
    Abstract [en]

    In vivo imaging of the developing pancreas is challenging due to the inaccessibility of the tissue. To circumvent this, on embryonic day 10.5 (E10.5) we transplanted a mouse developing pancreatic bud into the anterior chamber of the eye (ACE) to determine whether the eye is a useful transplant site to support pancreas development. We transplanted an E10.5 dorsal pancreatic bud into the ACE of a syngeneic recipient mouse. Using a mouse insulin promoter-green fluorescent protein (MIP-GFP) mouse as the tissue donor, we non-invasively imaged the pancreatic bud as it develops at single beta cell resolution across time. The transplanted pancreatic bud rapidly engrafts and vascularises when transplanted into the ACE. The pancreatic progenitor cells differentiate into exocrine and endocrine cells, including cells expressing insulin, glucagon and somatostatin. The morphology of the transplanted pancreatic bud resembles that of the native developing pancreas. Beta cells within the transplanted pancreatic bud respond to glucose in a manner similar to that of native fetal beta cells and superior to that of in vitro developed beta cells. Unlike in vitro grown pancreatic explants, pancreatic tissue developing in the ACE is vascularised, providing the developing pancreatic tissue with a milieu resembling the native situation. Altogether, we show that the ACE is able to support growth, differentiation and function of a developing pancreatic bud across time in vivo.

  • 18.
    Andersson, Christopher
    Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS). Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR). Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    Regulatory pathways and virulence inhibition in Listeria monocytogenes2016Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Listeria monocytogenes is a rod-shaped Gram positive bacterium. It generally exist ubiquitously in nature, where it lives as a saprophyte. Occasionally it however enters the food chain, from where it can be ingested by humans and cause gastro-intestinal distress. In immunocompetent individuals L. monocytogenes is generally cleared within a couple of weeks, but in immunocompromised patients it can progress to listeriosis, a potentially life-threatening infection in the central nervous system. If the infected individual is pregnant, the bacteria can cross the placental barrier and infect the fetus, possibly leading to spontaneous abortion.

    The infectivity of L. monocytogenes requires a certain set of genes, and the majority of them is dependent on the transcriptional regulator PrfA. The expression and activity of PrfA is controlled at several levels, and has traditionally been viewed to be active at 37 °C (virulence conditions) where it bind as a homodimer to a “PrfA-box” and induces the expression of the downstream gene.

    One of these genes is ActA, which enables intracellular movement by recruiting an actin polymerizing protein complex. When studying the effects of a blue light receptor we surprisingly found an effect of ActA at non-virulent conditions, where it is required for the bacteria to properly react to light exposure.

    To further study the PrfA regulon we tested deletion mutants of several PrfA-regulated virulence genes in chicken embryo infection studies. Based on these studies we could conclude that the chicken embryo model is a viable complement to traditional murine models, especially when investigating non-traditional internalin pathogenicity pathways. We have also studied the effects of small molecule virulence inhibitors that, by acting on PrfA, can inhibit L. monocytogenes infectivity in cell cultures with concentrations in the low micro-molar range.

  • 19.
    Andersson, Elisabet
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    The evolutionary study of the immunoglobulin heavy chain genes of a bony fish, rainbow trout (Oncorhynchus mykiss)1995Doctoral thesis, comprehensive summary (Other academic)
  • 20.
    Andersson, Gustav
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy. Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Sports Medicine.
    Influences of paratendinous innervation and non-neuronal substance P in tendinopathy: studies on human tendon tissue and an experimental model of Achilles tendinopathy2010Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Pain of the musculoskeletal system is one of the most common reasons for people seeking medical attention, and is also one of the major factors that prevent patients from working. Chronic tendon pain, tendinopathy, affects millions of workers world-wide, and the Achilles tendon is an important structure often afflicted by this condition. The pathogenesis of tendinopathy is poorly understood, but it is thought to be of multifactoral aetiology. It is known that tendon pain is often accompanied not only by impaired function but also by structural tissue changes, like vascular proliferation, irregular collagen organisation, and hypercellularity, whereby the condition is called tendinosis. In light of the poor knowledge of tendinosis pathophysiology and recent findings of a non-neuronal signalling system in tendon tissue, the contributory role of neuropeptides such as substance P (SP) has gained increased interest. SP, known for afferent pain signalling in the nervous system, also has multiple efferent functions and has been described to be expressed by non-neuronal cells. As pain is the most prominent symptom of tendinopathy, the focus of the studies in this thesis was the innervation patterns of the tissue ventral to the Achilles tendon (i.e. the tissue targeted in many contemporary treatment methods) as well as the distribution of SP and its preferred receptor, the neurokinin-1 receptor (NK-1R), in the tendon tissue itself. It was hereby hypothesised that the source of SP affecting the Achilles tendon might be the main cells of the tendon tissue (the tenocytes) as well as paratendinous nerves, and that SP might be involved in tendinosis- development. The studies were conducted, via morphological staining methods including immunohistochemistry and in situ hybridisation, on tendon biopsies from patients suffering from Achilles tendinosis and on those from healthy volunteers. The hypothesis of the thesis was furthermore tested using an experimental animal model (rabbit) of Achilles tendinopathy, which was first validated. The model was based on a previously established overuse protocol of repetitive exercise. In the human biopsies of the tissue ventral to the Achilles tendon, there was a marked occurrence of sympathetic innervation, but also sensory, SP-containing, nerve fibres. NK-1R was expressed on blood vessels and nerve fascicles of the paratendinous tissue, but also on the tenocytes of the tendon tissue proper itself, and notably more so in patients suffering from tendinosis. Furthermore, the human tenocytes displayed not only NK-1R mRNA but also mRNA for SP. The animal model was shown to produce objectively verified tendinosis-like changes, such as hypercellularity and increased vascularity, in the rabbit Achilles tendons, after a minimum of three weeks of the exercise protocol. The contralateral leg of the animals in the model was found to be an unreliable control, as bilateral changes occured. The model furthermore demonstrated that exogenously administered SP triggers an inflammatory response in the paratendinous tissue and accelerates the intratendinous tendinosis-like changes such that they now occur after only one week of the protocol. Injections of saline as a control showed similar results as SP concerning hypercellularity, but did not lead to vascular changes or pronounced paratendinous inflammation. In summary, this thesis concludes that interactions between the peripheral sympathetic and sensory nervous systems may occur in Achilles tendinosis at the level of the ventral paratendinous tissue, a region thought to be of great importance in chronic tendon pain since many successful treatments are directed toward it. Furthermore, the distribution of NK-1R:s in the Achilles tendon described in these studies gives a basis for SP, whether produced by nerves mainly outside the tendon or by tenocytes within the tendon, to affect blood vessels, nerve structures, and/or tendon cells, especially in tendinosis patients. In light of this and of previously known SP-effects, such as stimulation of angiogenesis, pain signalling, and cell proliferation, the proposed involvement of SP in tendinosis development seems likely. Indeed, the animal model of Achilles tendon overuse confirms that SP does induce vascular proliferation and hypercellularity in tendon tissue, thus strengthening theories of SP playing a role in tendinosis pathology.

  • 21.
    Andersson, Gustav
    et al.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy. Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Hand Surgery.
    Backman, Ludvig J.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Christensen, Jens
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Alfredson, Håkan
    Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Sports Medicine.
    Nerve distributions in insertional Achilles tendinopathy - a comparison of bone, bursae and tendon2017In: Histology and Histopathology, ISSN 0213-3911, E-ISSN 1699-5848, Vol. 32, no 3, 263-270 p.Article in journal (Refereed)
    Abstract [en]

    Background/Aim. In a condition of pain in the Achilles tendon insertion there are multiple structures involved, such as the Achilles tendon itself, the retrocalcaneal bursa and a bony protrusion at the calcaneal tuberosity called Haglund's deformity. The innervation patterns of these structures are scarcely described, and the subcutaneous calcaneal bursa is traditionally not considered to be involved in the pathology. This study aimed at describing the innervation patterns of the four structures described above to provide a better understanding of possible origins of pain at the Achilles tendon insertion.

    Methods. Biopsies were taken from 10 patients with insertional Achilles tendinopathy, which had pathological changes in the subcutaneous and retrocalcaneal bursae, a Haglund deformity and Achilles tendon tendinopathy as verified by ultrasound. The biopsies were stained using immunohistochemistry in order to delineate the innervation patterns in the structures involved in insertional Achilles tendinopathy.

    Results. Immunohistochemical examinations found that the subcutaneous bursa scored the highest using a semi-quantitative evaluation of the degree of innervation when compared to the retrocalcaneal bursa, the Achilles tendon, and the calcaneal bone.

    Conclusions. These findings suggest that the subcutaneous bursa, which is traditionally not included in surgical treatment, may be a clinically important factor in insertional Achilles tendinopathy.

  • 22.
    Andersson, Gustav
    et al.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Backman, Ludvig
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Scott, Alexander
    Department of Physical Therapy, University of British Columbia, Vancouver, BC, Canada.
    Lorentzon, Ronny
    Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Sports Medicine.
    Forsgren, Sture
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Danielson, Patrik
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Substance P induces tendinosis-like changes in a rabbit model of Achilles tendon overuseManuscript (preprint) (Other academic)
    Abstract [en]

    BACKGROUND: In previous studies we found evidence favouring that human Achilles tendon cells (tenocytes) are capable of producing the neuropeptide substance P (SP). Furthermore, the preferred receptor for SP (the neurokinin-1 receptor, NK-1 R) was widely expressed throughout the tendon, especially in patients suffering from chronic tendon pain (tendinopathy) with tissue changes (tendinosis) including hypercellularity and vascular proliferation. Considering known effects of SP, one might ask whether SP contributes to tendon cell proliferation and neovascularisation in tendinosis. We have an established animal (rabbit) model of Achilles tendinopathy based on overuse in the form of repetitive exercise. Recent studies with this model have shown that tendinosis-like changes are present after 3 weeks of exercise, but not after only 1 week. The current study aimed to test whether the development of tendinosis-like changes would be accelerated during a 1 week course of exercise with repetitive local administration of SP.

    MATERIAL AND METHODS: Four groups of animals (5-6 New Zealand white rabbits per group) were used. Three groups were subjected to the previously established protocol of Achilles tendon overuse for 1 week. One of these groups was given repetitive SP injections in the paratendinous tissue of the Achilles tendon, whereas one group (‘NaCl controls’) was given an equivalent schedule of saline injections. Two additional control groups existed: One in which the animals were neither subjected to the overuse protocol nor to any injections (‘untrained controls’), and one in which the animals trained for 1 week but were not given any injections (‘1 week controls’). Tenocyte number, vascular density, and the possible occurrence of paratendinous inflammation were evaluated. Immunohistochemistry and in situ hybridisation to detect NK-1 R were also conducted.

    RESULTS: There was a significant increase in tenocyte number in the SP-injected group compared to both untrained controls and 1 week controls. However, the same phenomenon was noticed for NaCl controls, i.e. tenocyte number was significantly increased in response to NaCl injections compared to untrained controls. There was an increase in the number of tendon blood vessels in the SP-injected group as compared to untrained controls, and this increase in vascularity was not seen for the NaCl controls or the 1 week controls. Paratendinous inflammation, as evidenced by invasion of inflammatory cells in the paratenon, was clearly more pronounced in the SP-injected group than in the NaCl controls. NK-1 R was detected in blood vessel walls, on nerves, on inflammatory cells, and on tenocytes.

    DISCUSSION AND CONCLUSIONS: The observations suggest that SP induces tenocyte proliferation and angiogenesis in the rabbit Achilles tendon, thus supporting a potential role of this neuropeptide in the processes that occur in tendinosis. The study corroborates findings on the human Achilles tendon in that NK-1 R was expressed on tenocytes and tendon blood vessel walls, thereby providing a potential anatomic basis for the observed effects of SP on the development of tendinosis. The hypercellularity observed in response to NaCl injections might be due increased tissue pressure or to stimulation of endogenous SPproduction, a phenomenon not unheard of. The angiogenic effect of SP injections, on the other hand, appeared to be more specifically related to an induction of inflammation in the paratendon.

  • 23.
    Andersson, Gustav
    et al.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Danielson, Patrik
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB).
    Alfredson, Håkan
    Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Sports Medicine.
    Forsgren, Sture
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB).
    Nerve-related characteristics of ventral paratendinous tissue in chronic Achilles tendinosis2007In: Knee Surgery, Sports Traumatology, Arthroscopy, ISSN 0942-2056, E-ISSN 1433-7347, Vol. 15, no 10, 1272-1279 p.Article in journal (Refereed)
    Abstract [en]

    Ultrasound and Doppler examination has shown high blood flow-neovascularisation inside and outside the ventral Achilles tendon in chronic painful tendinosis, but not in pain-free normal Achilles tendons. In patients with Achilles tendinosis, injections with the sclerosing substance polidocanol, targeting the areas with increased blood flow, have been demonstrated to give pain relief. A drawback when interpreting these findings is the fact that the pattern of nerve supply in the target area, i.e. the ventral area of the tendon, is so far unknown. In this study, therefore, tissue specimens from this area, obtained during surgical treatment of patients with chronic painful midportion Achilles tendinosis, were examined. In the examined area, containing loose connective tissue, the general finding was a presence of large and small arteries and nerve fascicles. The nerve fascicles were distinguished in sections processed for the pan-neural marker protein gene-product 9.5. The nerve fascicles contain sensory nerve fibers, as shown via staining for the sensory markers substance P (SP) and calcitonin gene-related peptide, and sympathetic nerve fibers as seen via processing for tyrosine hydroxylase. In addition, there were immunoreactions for the SP-preferred receptor, the neurokinin-1 receptor, in blood vessel walls and nerve fascicles. Some of the blood vessels were supplied by an extensive peri-vascular innervation, sympathetic nerve fibers being a distinct component of this innervation. There was also a marked occurrence of immunoreactions for the alpha1-adrenoreceptor in arterial walls as well as in the nerve fascicles. Altogether, these findings suggest that the area investigated is under marked influence by the nervous system, including sympathetic and sensory components. Thus, sympathetic/sensory influences may be involved in the pain mechanisms from this area. In conclusion, the nerve-related characteristics of the area targeted by the polidicanol injection treatment for Achilles tendinosis, are shown here for the first time.

  • 24.
    Andersson, Gustav
    et al.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Danielson, Patrik
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Alfredson, Håkan
    Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Sports Medicine.
    Forsgren, Sture
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Presence of substance P and the neurokinin-1 receptor in tenocytes of the human Achilles tendon2008In: Regulatory Peptides, ISSN 0167-0115, E-ISSN 1873-1686, Vol. 150, no 1-3, 81-87 p.Article in journal (Refereed)
    Abstract [en]

    Nerve signal substances, such as the tachykinin substance P (SP), may be involved in the changes that occur in response to tendinopathy (tendinosis). It is previously known that the level of SP innervation within tendon tissue is limited, but results of experimental studies have suggested that SP may have stimulatory, angiogenetic and healing effects in injured tendons. Therefore, it would be of interest to know if there is a local SP-supply in tendon tissue. In the present study, the patterns of expression of SP and its preferred receptor, the neurokinin-1 receptor (NK-1 R), in normal and tendinosis human Achilles tendons were analyzed by use of both immunohistochemistry and in situ hybridization. We found that there was expression of SP mRNA in tenocytes, and that tenocytes showed expression of NK-1 R at protein as well as mRNA levels. The observations concerning both SP and NK-1 R were most evident for tenocytes in tendinosis tendons. Our findings suggest that SP is produced in tendinosis tendons, and furthermore that SP has marked effects on the tenocytes via the NK-1 R. It cannot be excluded that the SP effects are of importance concerning the processes of reorganization and healing that occur for tendon tissue in tendinosis. In conclusion, it appears as if SPergic autocrine/paracrine effects occur in tendon tissue during the processes of tendinosis, hitherto unknown effects for human tendons.

  • 25.
    Andersson, Gustav
    et al.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Forsgren, Sture
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Scott, Alexander
    University of British Columbia, Vancouver, Vancouver Coastal Health and Research Institute.
    Gaida, James Edmund
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Stjernfeldt, Johanna Elgestad
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Lorentzon, Ronny
    Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Sports Medicine.
    Alfredson, Håkan
    Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Sports Medicine.
    Backman, Clas
    Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Hand Surgery.
    Danielson, Patrik
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Tenocyte hypercellularity and vascular proliferation in a rabbit model of tendinopathy: contralateral effects suggest the involvement of central neuronal mechanisms2011In: British Journal of Sports Medicine, ISSN 0306-3674, E-ISSN 1473-0480, Vol. 45, no 5, 399-406 p.Article in journal (Refereed)
    Abstract [en]

    Objective To determine whether there are objective findings of tendinosis in a rabbit tendinopathy model on exercised and contralateral (non-exercised) Achilles tendons. Design Four groups of six New Zealand white rabbits per group were used. The animals of one (control) group were not subjected to exercise/stimulation. Interventions Animals were subjected to a protocol of electrical stimulation and passive flexion-extension of the right triceps surae muscle every second day for 1, 3 or 6 weeks. Main Outcome Measures Tenocyte number and vascular density were calculated. Morphological evaluations were also performed as well as in-situ hybridisation for vascular endothelial growth factor (VEGF) messenger RNA. Results There was a significant increase in the tenocyte number after 3 and 6 weeks of exercise, but not after 1 week, in comparison with the control group. This was seen in the Achilles tendons of both legs in experimental animals, including the unexercised limb. The pattern of vascularity showed an increase in the number of tendon blood vessels in rabbits that had exercised for 3 weeks or more, compared with those who had exercised for 1 week or not at all. VEGF-mRNA was detected in the investigated tissue, with the reactions being more clearly detected in the tendon tissue with tendinosis-like changes (6-week rabbits) than in the normal tendon tissue (control rabbits). Conclusions There were bilateral tendinosis-like changes in the Achilles tendons of rabbits in the current model after 3 weeks of training, suggesting that central neuronal mechanisms may be involved and that the contralateral side is not appropriate as a control.

  • 26. Andersson, Karin
    et al.
    Pokrzywa, M
    Dacklin, Ingrid
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    Lundgren, Erik
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    Inhibition of TTR aggregation-induced cell death: a new role for serum amyloid P component2013In: PLoS ONE, ISSN 1932-6203, Vol. 8, no 2Article in journal (Refereed)
    Abstract [en]

    BACKGROUND: Serum amyloid P component (SAP) is a glycoprotein that is universally found associated with different types of amyloid deposits. It has been suggested that it stabilizes amyloid fibrils and therefore protects them from proteolytic degradation.

    METHODOLOGY/PRINCIPAL FINDINGS: In this paper, we show that SAP binds not only to mature amyloid fibrils but also to early aggregates of amyloidogenic mutants of the plasma protein transthyretin (TTR). It does not inhibit fibril formation of TTR mutants, which spontaneously form amyloid in vitro at physiological pH. We found that SAP prevents cell death induced by mutant TTR, while several other molecules that are also known to decorate amyloid fibrils do not have such effect. Using a Drosophila model for TTR-associated amyloidosis, we found a new role for SAP as a protective factor in inhibition of TTR-induced toxicity. Overexpression of mutated TTR leads to a neurological phenotype with changes in wing posture. SAP-transgenic flies were crossed with mutated TTR-expressing flies and the results clearly confirmed a protective effect of SAP on TTR-induced phenotype, with an almost complete reduction in abnormal wing posture. Furthermore, we found in vivo that binding of SAP to mutated TTR counteracts the otherwise detrimental effects of aggregation of amyloidogenic TTR on retinal structure.

    CONCLUSIONS/SIGNIFICANCE: Together, these two approaches firmly establish the protective effect of SAP on TTR-induced cell death and degenerative phenotypes, and suggest a novel role for SAP through which the toxicity of early amyloidogenic aggregates is attenuated.

  • 27.
    Andersson, Åsa
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    B cell repertoire development in normal physiology and autoimmune disease1993Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    The B cell repertoire in the neonatal immune system (IS) is characterised by reactivity towards self-components, including other immunoglobulin (Ig) V-regions. These properties have been suggested to be a requirement for the development of a normal immune system. DNA sequencing of two interacting Ig idiotypes, derived from neonatal, preimmune mice, demonstrated that such idiotypic connectivity is germ- line encoded and devoid of VDJ junctional diversity. The serum levels of the same Ig idiotypes were studied in normal mice and demonstrated that the expression in serum fluctuated over time in a pattern compatible with a complex dynamic system. In contrast, similar analyses in autoimmune mice or humans demonstrated fluctuations in Ig titers that differed significantly from the healthy individuals. These findings suggested that pathological autoimmunity may be associated with fundamental alterations in the dynamics of natural antibody (ab) expression. This was further investigated in the nonobese diabetic (NOD) mouse, an animal model for human Type I diabetes. Suppression of the early B cell development in the NOD mouse prevented the development of diabetes, suggesting a role for B cells/Igs in the development of diabetes in these mice. Furthermore, neonatal injections of polyclonal Ig preparations or single, monoclonal natural abs inhibited disease induction. The prevention of diabetes development by one such natural ab was demonstrated to be dependent on both the dose injected and the timing of administration. Studies of the B cell repertoire development in NOD mice, compared to normal mice, by DNA-sequence analyses of IgVH rearrangements utilising genes from the most D-proximal Vh family, Vh7183, supported the idea of an aberrant B cell repertoire in this mouse model. Thus, the adult NOD mouse retained a neonatal pattern of Vh7183 rearrangements. This pattern could, however, be "normalised" by neonatal injection of a natural antibody, previously demonstrated to prevent the development of T cell dependent autoimmunity in the NOD mouse.

  • 28.
    Arasu, Uma Thanigai
    et al.
    Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland.
    Kärnä, Riikka
    Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland.
    Härkönen, Kai
    Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland.
    Oikari, Sanna
    Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland.
    Koistinen, Arto
    SIB Labs, University of Eastern Finland, Kuopio, Finland.
    Kröger, Heikki
    Department of Orthopaedics and Traumatology, Kuopio University Hospital, Kuopio, Finland; Bone and Cartilage Research Unit, Surgery, Institute of Clinical Medicine, University of Eastern, Finland.
    Qu, Chengjuan
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB).
    Lammi, Mikko
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB). School of Public Health, Health Science Center of Xi'an Jiaotong University, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, PR China.
    Rilla, Kirsi
    Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland.
    Human mesenchymal stem cells secrete hyaluronan-coated extracellular vesicles2017In: Matrix Biology, ISSN 0945-053X, E-ISSN 1569-1802, S0945-053X(17)30096-3Article in journal (Refereed)
    Abstract [en]

    Extracellular vesicles (EVs) secreted by stem cells are potential factors mediating tissue regeneration. They travel from bone marrow stem cells into damaged tissues, suggesting that they can repair tissue injuries without directly replacing parenchymal cells. We have discovered that hyaluronan (HA) synthesis is associated with the shedding of HA-coated EVs. The aim of this study was to test whether bone marrow-derived hMSCs secrete HA-coated EVs. The EVs secreted by MSCs were isolated by differential centrifugation and characterized by nanoparticle tracking analysis. Their morphology and budding mechanisms were inspected by confocal microscopy and correlative light and electron microscopy. Hyaluronan synthesis of hMSCs was induced by lipopolysaccharide and inhibited by RNA interference and 4-methylumbelliferone. It was found that the MSCs have extremely long apical and lateral HA-coated filopodia, typical for cells with an active HA secretion. Additionally, they secreted HA-coated EVs carrying mRNAs for CD44 and all HAS isoforms. The results show that stem cells have a strong intrinsic potential for HA synthesis and EV secretion, and the amount of HA carried on EVs reflects the HA content of the original cells. These results show that the secretion of HA-coated EVs by hMSCs is a general process, that may contribute to many of the mechanisms of HA-mediated tissue regeneration. Additionally, an HA coat on EVs may regulate their interactions with target cells and participate in extracellular matrix remodeling.

  • 29. Arend, Andres
    et al.
    Masso, Raivo
    Masso, Marika
    Selstam, Gunnar
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    Electron microscope immunocytochemical localization of cyclooxygenase-1 and-2 in pseudopregnant rat corpus luteum during luteolysis2004In: Prostaglandins & other lipid mediators, ISSN 1098-8823, E-ISSN 2212-196X, Vol. 74, no 1-4, 1-10 p.Article in journal (Refereed)
    Abstract [en]

    Prostaglandins converted from arachidonic acid by cyclooxygenases play an important regulatory role in regression of the corpus luteum. To reveal luteal distribution of cyclooxygenase isoforms during luteolysis, an electron microscope immunocytochemical study was performed. Cyclooxygenase-1 and -2 were found both in luteal steroid-producing and interstitial cells on days 13, 15 and 18 of the adult pseudopregnant rat. Cyclooxygenase-2 immunolabelling was predominantly seen in non-luteal cells. The two enzymes were localized in similar fashion to the plasma membrane, rough and smooth endoplasmic reticulum, lipid bodies and mitochondria, but differently in the nuclear compartment. Cyclooxygenase-1 labelling was found only in the perinuclear region, while cyclooxygenase-2 was localized to the nuclear envelope, region of condensed heterochromatin as well as at the perimeter of the heterochromatin. Nuclear residence may indicate additional roles for cyclooxygenase-2 in regulating gene expression. Identification of both enzymes on lipid bodies suggests that these inclusions may be involved in luteal prostanoid production.

  • 30. Arnheim, L
    et al.
    Dillner, Joakim
    Umeå University, Faculty of Medicine, Department of Biobank Research. Department of Medical Microbiology, Lund University, Malmö University Hospital, Malmö, Sweden.
    Sanjeevi, CB
    A population-based cohort study of KIR genes and genotypes in relation to cervical intraepithelial neoplasia2005In: Tissue Antigens, ISSN 0001-2815, E-ISSN 1399-0039, Vol. 65, no 3, 252-259 p.Article in journal (Refereed)
    Abstract [en]

    Natural killer (NK) cells are involved both in control of virus infections and in elimination of tumor cells. Killer immunoglobulin-like receptors (KIRs) either activate or inhibit NK cell-mediated cytolysis, protecting healthy cells from destruction while enabling killing of abnormal cells. To investigate whether KIR genes or genotypes are associated with cervical carcinogenesis, a nested case-control study of 65 case women with cervical intraepithelial neoplasia (CIN) diagnosed during a 6-year follow-up of 15,234 women and 150 control women from the same cohort that remained healthy was performed. More than 70 different genotypes were observed, and 33 of which had not been described previously. An A-genotype including KIR2DL1, KIR2DL2, KIR2DL3, KIR2DL4, KIR3DL1, KIR3DL2, KIR3DL3, and KIR2DS4 was associated with increased risk of CIN (OR 6.7; 95% CI 1.7-26.3), and KIR2DL5B*002 appeared to have an inverse association with disease (OR 0.5; 95% CI 0.5-2.9). There was no association of CIN with the number of activating KIR genes. There was also no association between KIR genes and type of human papilloma virus or with other CIN-related immune response genes. It was concluded that certain KIR genes and genotypes may associate with cervical neoplasia.

  • 31.
    Arokoski, Jari
    et al.
    Department of Rehabilitation, Kuopio University Hospital, Kuopio, Finland.
    Lammi, Mikko
    Department of Anatomy, University of Kuopio, Kuopio, Finland.
    Hyttinen, Mika
    Department of Anatomy, University of Kuopio, Kuopio, Finland.
    Kiviranta, Ilkka
    Department of Surgery, Keski-Suomi Central Hospital, Jyväskylä, Finland.
    Parkkinen, Jyrki
    Laboratory Center, Pathology, Tampere University Hospital, Tampere, Finland.
    Jurvelin, Jukka
    Department of Clinical Physiology and Isotope Medicine, Kuopio University Hospital, Kuopio, Finland.
    Tammi, Markku
    Department of Anatomy, University of Kuopio, Kuopio, Finland.
    Helminen, Heikki
    Department of Anatomy, University of Kuopio, Kuopio, Finland.
    Nivelrikon etiopatogeneesi [Etiopathogenesis of osteoarthritis].2001In: Duodecim, ISSN 0012-7183, Vol. 117, no 16, 1617-1626 p., 12182099Article in journal (Refereed)
    Abstract [fi]

    Nivelrikon patofysiologia tunnetaan huonosti. Nykykäsityksen mukaan artroosissa ei olekyse nivelruston passiivisesta kulumisesta vaan biokemiallisesta tapahtumasarjasta, jossasoluväliaineen tuhoutuminen saa ylivallan rustoa korjaavista prosesseista. Nivelrikon alkuvaiheessarustosoluissa eli kondrosyyteissä aktivoituvat sekä ruston aineosien synteesitoimintaettä rustoa hajottavien entsyymien ilmentyminen ja niitä koodaavien geenientoiminta. Nivelrikko on koko nivelen sairaus, joka aiheuttaa muutoksia niin nivelrustossa,luussa kuin pehmytosissakin. Vallitsevan käsityksen mukaan nivelrikko käynnistyynivelruston pinnallisesta vyöhykkeestä. On myös esitetty, että nivelalueen altistuminenliialliselle kuormitukselle aiheuttaisi ensin rustonalaisen luun paksunemisen ja jäykkenemisen,mikä puolestaan altistaisi nivelruston suuremmille kuormittaville voimille. Riskitekijöistätärkeimpiä ovat ikääntyminen, liikapaino, niveleen kohdistuvat vammat ja ruumiillisentyön aiheuttama liikarasitus. Perinnöllisten tekijöiden osuus on myös merkittävä.Ruston kollageenien rakennevirheiden tiedetään altistavan nivelrikolle.

  • 32.
    Aung, Kyaw Min
    et al.
    Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS). Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    Sjöström, Annika E
    Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS). Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    von Pawel-Rammingen, Ulrich
    Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS). Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    Riesbeck, Kristian
    Uhlin, Bernt Eric
    Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS). Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    Wai, Sun Nyunt
    Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS). Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    Naturally Occurring IgG Antibodies Provide Innate Protection against Vibrio cholerae Bacteremia by Recognition of the Outer Membrane Protein U2016In: Journal of Innate Immunity, ISSN 1662-811X, E-ISSN 1662-8128, Vol. 8, no 3, 269-283 p.Article in journal (Refereed)
    Abstract [en]

    Cholera epidemics are caused by Vibrio cholerae serogroups O1 and O139, whereas strains collectively known as non-O1/non-O139 V. cholerae are found in cases of extraintestinal infections and bacteremia. The mechanisms and factors influencing the occurrence of bacteremia and survival of V. cholerae in normal human serum have remained unclear. We found that naturally occurring IgG recognizing V. cholerae outer membrane protein U (OmpU) mediates a serum-killing effect in a complement C1q-dependent manner. Moreover, outer membrane vesicles (OMVs) containing OmpU caused enhanced survival of highly serum-sensitive classical V. cholerae in a dose-dependent manner. OMVs from wild-type and ompU mutant V. cholerae thereby provided a novel means to verify by extracellular transcomplementation the involvement of OmpU. Our data conclusively indicate that loss, or reduced expression, of OmpU imparts resistance to V. cholerae towards serum killing. We propose that the difference in OmpU protein levels is a plausible reason for differences in serum resistance and the ability to cause bacteremia observed among V. cholerae biotypes. Our findings provide a new perspective on how naturally occurring antibodies, perhaps induced by members of the microbiome, may play a role in the recognition of pathogens and the provocation of innate immune defense against bacteremia.

  • 33. Avagyan, Serine
    et al.
    Aguilo, Francesca
    Kamezaki, Kenjiro
    Snoeck, Hans-Willem
    Quantitative trait mapping reveals a regulatory axis involving peroxisome proliferator-activated receptors, PRDM16, transforming growth factor-β2 and FLT3 in hematopoiesis.2011In: Blood, ISSN 0006-4971, E-ISSN 1528-0020, Vol. 118, no 23Article in journal (Refereed)
    Abstract [en]

    Hematopoiesis is the process whereby BM HSCs renew to maintain their number or to differentiate into committed progenitors to generate all blood cells. One approach to gain mechanistic insight into this complex process is the investigation of quantitative genetic variation in hematopoietic function among inbred mouse strains. We previously showed that TGF-β2 is a genetically determined positive regulator of hematopoiesis. In the presence of unknown nonprotein serum factors TGF-β2, but not TGF-β1 or -β3, enhances progenitor proliferation in vitro, an effect that is subject to mouse strain-dependent variation mapping to a locus on chr.4, Tb2r1. TGF-β2-deficient mice show hematopoietic defects, demonstrating the physiologic role of this cytokine. Here, we show that TGF-β2 specifically and predominantly cell autonomously enhances signaling by FLT3 in vitro and in vivo. A coding polymorphism in Prdm16 (PR-domain-containing 16) underlies Tb2r1 and differentially regulates transcriptional activity of peroxisome proliferator-activated receptor-γ (PPARγ), identifying lipid PPAR ligands as the serum factors required for regulation of FLT3 signaling by TGF-β2. We furthermore show that PPARγ agonists play a FLT3-dependent role in stress responses of progenitor cells. These observations identify a novel regulatory axis that includes PPARs, Prdm16, and TGF-β2 in hematopoiesis.

  • 34. Avall, Karin
    et al.
    Ali, Yusuf
    Leibiger, Ingo B.
    Leibiger, Barbara
    Moede, Tilo
    Paschen, Meike
    Dicker, Andrea
    Dare, Elisabetta
    Kohler, Martin
    Ilegems, Erwin
    Abdulreda, Midhat H.
    Graham, Mark
    Crooke, Rosanne M.
    Tay, Vanessa S. Y.
    Refai, Essam
    Nilsson, Stefan K.
    Umeå University, Faculty of Medicine, Department of Medical Biosciences, Physiological chemistry.
    Jacob, Stefan
    Selander, Lars
    Berggren, Per-Olof
    Juntti-Berggren, Lisa
    Apolipoprotein CIII links islet insulin resistance to beta-cell failure in diabetes2015In: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, Vol. 112, no 20, E2611-E2619 p.Article in journal (Refereed)
    Abstract [en]

    Insulin resistance and beta-cell failure are the major defects in type 2 diabetes mellitus. However, the molecular mechanisms linking these two defects remain unknown. Elevated levels of apolipoprotein CIII (apoCIII) are associated not only with insulin resistance but also with cardiovascular disorders and inflammation. We now demonstrate that local apoCIII production is connected to pancreatic islet insulin resistance and beta-cell failure. An increase in islet apoCIII causes promotion of a local inflammatory milieu, increased mitochondrial metabolism, deranged regulation of beta-cell cytoplasmic free Ca2+ concentration ([Ca2+](i)) and apoptosis. Decreasing apoCIII in vivo results in improved glucose tolerance, and pancreatic apoCIII knockout islets transplanted into diabetic mice, with high systemic levels of the apolipoprotein, demonstrate a normal [Ca2+](i) response pattern and no hallmarks of inflammation. Hence, under conditions of islet insulin resistance, locally produced apoCIII is an important diabetogenic factor involved in impairment of beta-cell function and may thus constitute a novel target for the treatment of type 2 diabetes mellitus.

  • 35.
    Avican, Kemal
    et al.
    Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR). Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS). Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    Fahlgren, Anna
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine). Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR).
    Huss, Mikael
    Heroven, Ann Kathrin
    Beckstette, Michael
    Dersch, Petra
    Fällman, Maria
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine). Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR). Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS).
    Reprogramming of Yersinia from Virulent to Persistent Mode Revealed by Complex In Vivo RNA-seq Analysis2015In: PLoS Pathogens, ISSN 1553-7366, E-ISSN 1553-7374, Vol. 11, no 1, e1004600Article in journal (Refereed)
    Abstract [en]

    We recently found that Yersinia pseudotuberculosis can be used as a model of persistent bacterial infections. We performed in vivo RNA-seq of bacteria in small cecal tissue biopsies at early and persistent stages of infection to determine strategies associated with persistence. Comprehensive analysis of mixed RNA populations from infected tissues revealed that Y. pseudotuberculosis undergoes transcriptional reprogramming with drastic down-regulation of T3SS virulence genes during persistence when the pathogen resides within the cecum. At the persistent stage, the expression pattern in many respects resembles the pattern seen in vitro at 26oC, with for example, up-regulation of flagellar genes and invA. These findings are expected to have impact on future rationales to identify suitable bacterial targets for new antibiotics. Other genes that are up-regulated during persistence are genes involved in anaerobiosis, chemotaxis, and protection against oxidative and acidic stress, which indicates the influence of different environmental cues. We found that the Crp/CsrA/RovA regulatory cascades influence the pattern of bacterial gene expression during persistence. Furthermore, arcA, fnr, frdA, and wrbA play critical roles in persistence. Our findings suggest a model for the life cycle of this enteropathogen with reprogramming from a virulent to an adapted phenotype capable of persisting and spreading by fecal shedding.

  • 36.
    Avican, Kemal
    et al.
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    Nilsson, K
    Fällman, Maria
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    Transcriptomic characterization of RfaH linked to persistent infection of Yersinia pseudotuberculosisManuscript (preprint) (Other academic)
  • 37.
    Backman, Ludvig
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Neuropeptide and catecholamine effects on tenocytes in tendinosis development: studies on two model systems with focus on proliferation and apoptosis2013Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Background: Achilles tendinopathy is a common clinical syndrome of chronic Achilles tendon pain combined with thickening of the tendon and impaired tendon function. Tendinopathy is often, but not always, induced by mechanical overload, and is frequently accompanied by abnormalities at the tissue level, such as hypercellularity and angiogenesis, in which case the condition is called tendinosis. In tendinosis, there are no signs of intratendinous inflammation, but occasionally increased apoptosis is observed. Tendinosis is often hard to treat and its pathogenesis is still not clear. Recently, a new hypothesis has gained support, suggesting a biochemical model based on the presence of a non-neuronal production of classically neuronal signal substances by the primary tendon cells (tenocytes) in tendinosis. The possible functional importance of these signal substances in tendons is unknown and needs to be studied. In particular, the neuropeptide substance P (SP) and catecholamines are of interest in this regard, since these substances have been found to be up-regulated in tendinosis. As both SP and catecholamines are known to exert effects in other tissues resulting in changes similar to those characteristic of tendinosis, it is possible that they have a role in tendinosis development. It is furthermore unknown what elicits the increased intratendinous neuropeptide production in tendinosis, but given that tendon overload is a prominent riskfactor, it is possible that mechanical stimuli are involved.

    The hypothesis of this thesis work was that intratendinous production of SP is up-regulated in response to load of Achilles tendons/tenocytes, and thatstimulation of the preferred SP receptor, the neurokinin-1 receptor (NK-1 R), aswell as stimulation of the catecholamine α2 adrenoreceptors, contribute to the hypercellularity seen in tendinosis, via increased proliferation and/or decreased apoptosis, and that SP stimulates tendon angiogenesis. The purpose of the studies was to test this hypothesis. To achieve this, two model systems were used: One in vivo (rabbit Achilles tendon overload model of tendinosis) and one in vitro (human primary Achilles tendon cell culture model).

    Results: In the rabbit Achilles tendon tissue, SP and NK-1 R expression was extensive in the blood vessel walls, but also to some extent seen in the tenocytes. Quantification of endogenously produced SP in vivo confirmed intratendinous production of the peptide. The production of SP by human tendon cells in vitro was furthermore demonstrated. The catecholamine synthesizing enzyme tyrosine hydroxylase (TH), as well as the α2A adrenoreceptor (α2A AR), were detected in the tenocytes, both in vivo in the rabbit tissue and in vitro in the human tendon cells. As a response to mechanical loading in the in vivo model, the intratendinous levels of SP increased, and this elevation was found to precede distinct tendinosis changes. The in vitro model demonstrated the same response to load, i.e. an increased SP expression, but in this case also a decrease in the NK-1 R expression. In the in vivo model, exogenously administered SP, as well as clonidine (an α2 AR agonist), accelerated tenocyte hypercellularity, an effect that was not seen when administrating a specific α2A AR antagonist. Exogenous administration of SP also resulted in intratendinous angiogenesis and paratendinous inflammation. In the in vitro model, both SP and clonidine had proliferative effects on the human tenocytes, specifically mediated via NK-1R and α2A AR, respectively; both of which in turn involved activation/phosphorylation of the extracellular signal-regulated kinases 1 and 2 (ERK1/2). Exogenously administered SP, in Anti-Fas induced apoptosis of the tenocytes in vitro, confirmed SP to have an anti-apoptotic effect on these cells. This effect was specifically mediated via NK-1 R and the known anti-apoptotic Akt pathway.

    Conclusions: In summary, this thesis concludes that stimulation of NK-1 R and α2A AR on tenocytes, both in vitro and in vivo, mediates significant cell signalling effects leading to processes known to occur in tendinosis, including hypercellularity. The pathological role of the hypercellularity in tendinosis is still unclear, but it is likely to affect collagen metabolism/turnover and arrangement, and thereby indirectly tendon biomechanical function. Additional evidence is here provided showing that SP not only causes tenocyte proliferation, but also contributes to anti-apoptotic events. Furthermore, it was concluded that SP may be involved in the development of tendinosis, since its production is increased in response to load, preceding tendinosis, and since SP accelerates tendinosis changes, through some mechanistic pathways here delineated. These findings suggest that inhibition of SP, and possibly also catecholamines, could be beneficial in the reconstitution/normalization of tendon structure in tendinosis.

  • 38.
    Backman, Ludvig J
    et al.
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy. Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Sports Medicine.
    Danielson, Patrik
    Umeå University, Faculty of Medicine, Department of Integrative Medical Biology (IMB), Anatomy.
    Akt-mediated anti-apoptotic effects of substance P in Anti-Fas-induced apoptosis of human tenocytes2013In: Journal of Cellular and Molecular Medicine (Print), ISSN 1582-1838, Vol. 17, no 6, 723-733 p.Article in journal (Refereed)
    Abstract [en]

    Substance P (SP) and its receptor, the neurokinin-1 receptor (NK-1 R), are expressed by human tenocytes, and they are both up-regulated incases of tendinosis, a condition associated with excessive apoptosis. It is known that SP can phosphorylate/activate the protein kinase Akt,which has anti-apoptotic effects. This mechanism has not been studied for tenocytes. The aims of this study were to investigate if Anti-Fastreatment is a good apoptosis model for human tenocytes in vitro, if SP protects from Anti-Fas-induced apoptosis, and by which mechanismsSP mediates an anti-apoptotic response. Anti-Fas treatment resulted in a time- and dose-dependent release of lactate dehydrogenase (LDH), i.e.induction of cell death, and SP dose-dependently reduced the Anti-Fas-induced cell death through a NK-1 R specific pathway. The same trendwas seen for the TUNEL assay, i.e. SP reduced Anti-Fas-induced apoptosis via NK-1 R. In addition, it was shown that SP reduces Anti-Fas-induced decrease in cell viability as shown with crystal violet assay. Protein analysis using Western blot confirmed that Anti-Fas inducescleavage/activation of caspase-3 and cleavage of PARP; both of which were inhibited by SP via NK-1 R. Finally, SP treatment resulted in phosphorylation/activation of Akt as shown with Western blot, and it was confirmed that the anti-apoptotic effect of SP was, at least partly, inducedthrough the Akt-dependent pathway. In conclusion, we show that SP reduces Anti-Fas-induced apoptosis in human tenocytes and that this antiapoptoticeffect of SP is mediated through NK-1 R and Akt-specific pathways.

  • 39. Baeyens, Luc
    et al.
    Lemper, Marie
    Leuckx, Gunter
    De Groef, Sofie
    Bonfanti, Paola
    Stange, Geert
    Shemer, Ruth
    Nord, Christoffer
    Umeå University, Faculty of Medicine, Umeå Centre for Molecular Medicine (UCMM).
    Scheel, David W
    Pan, Fong C
    Ahlgren, Ulf
    Umeå University, Faculty of Medicine, Umeå Centre for Molecular Medicine (UCMM).
    Gu, Guoqiang
    Stoffers, Doris A
    Dor, Yuval
    Ferrer, Jorge
    Gradwohl, Gerard
    Wright, Christopher VE
    Van de Casteele, Mark
    German, Michael S
    Bouwens, Luc
    Heimberg, Harry
    Transient cytokine treatment induces acinar cell reprogramming and regenerates functional beta cell mass in diabetic mice2014In: Nature Biotechnology, ISSN 1087-0156, Vol. 32, no 1, 76-83 p.Article in journal (Refereed)
    Abstract [en]

    Reprogramming of pancreatic exocrine cells into cells resembling beta cells may provide a strategy for treating diabetes. Here we show that transient administration of epidermal growth factor and ciliary neurotrophic factor to adult mice with chronic hyperglycemia efficiently stimulates the conversion of terminally differentiated acinar cells to beta-like cells. Newly generated beta-like cells are epigenetically reprogrammed, functional and glucose responsive, and they reinstate normal glycemic control for up to 248 d. The regenerative process depends on Stat3 signaling and requires a threshold number of Neurogenin 3 (Ngn3)-expressing acinar cells. In contrast to previous work demonstrating in vivo conversion of acinar cells to beta-like cells by viral delivery of exogenous transcription factors, our approach achieves acinar-to-beta-cell reprogramming through transient cytokine exposure rather than genetic modification.

  • 40. Bagnato, Paola
    et al.
    Castagnino, Alessia
    Cortese, Katia
    Bono, Maria
    Grasso, Silvia
    Bellese, Grazia
    Daniele, Tiziana
    Lundmark, Richard
    Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics.
    Defilippi, Paola
    Castagnola, Patrizio
    Tacchetti, Carlo
    Cooperative but distinct early co-signaling events originate from ERBB2 and ERBB1 receptors upon trastuzumab treatment in breast cancer cells2017In: OncoTarget, ISSN 1949-2553, E-ISSN 1949-2553, Vol. 8, no 36, 60109-60122 p.Article in journal (Refereed)
    Abstract [en]

    ERBB2 receptor belongs to the ERBB tyrosine kinase receptor family. At variance to the other family members, ERBB2 is a constitutively active orphan receptor. Upon ligand binding and activation, ERBB receptors form homo-or hetero-dimers with the other family members, including ERBB2, promoting an intracellular signaling cascade. ERBB2 is the preferred dimerization partner and ERBB2 heterodimers signaling is stronger and longer acting compared to heterodimers between other ERBB members. The specific contribution of ERBB2 in heterodimer signaling is still undefined. Here we report the formation of circular dorsal ruffles (CDRs) upon treatment of the ERBB2-overexpressing breast cancer cell lines SK-BR-3 and ZR751 with Trastuzumab, a therapeutic humanized monoclonal antibody directed against ERBB2. We found that in SK-BR-3 cells Trastuzumab leads to surface redistribution of ERBB2 and ERBB1 in CDRs, and that the ERBB2-dependent ERK1/2 phosphorylation and ERBB1 expression are both required for CDR formation. In particular, in these cells CDR formation requires activation of both the protein regulator of actin polymerization N-WASP, mediated by ERK1/2, and of the actin depolymerizing protein cofilin, mediated by ERBB1. Furthermore, we suggest that this latter event may be inhibited by the negative cell motility regulator p140Cap, as we found that p140Cap overexpression led to cofilin deactivation and inhibition of CDR formation. In conclusion, here we show for the first time an ERBB2-specific signaling contribution to an ERBB2/ERBB1 heterodimer, in the activation of a complex biological process such as the formation of CDRs.

  • 41. Bahnan, Wael
    et al.
    Boettner, Douglas R.
    Westermark, Linda
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    Fällman, Maria
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    Schesser, Kurt
    Pathogenic Yersinia Promotes Its Survival by Creating an Acidic Fluid-Accessible Compartment on the Macrophage Surface2015In: PLoS ONE, ISSN 1932-6203, Vol. 10, no 8, e0133298Article in journal (Refereed)
    Abstract [en]

    Microbial pathogens and host immune cells each initiate events following their interaction in an attempt to drive the outcome to their respective advantage. Here we show that the bacterial pathogen Yersinia pseudotuberculosis sustains itself on the surface of a macrophage by forming acidic fluid-accessible compartments that are partially bounded by the host cell plasma membrane. These Yersinia-containing acidic compartments (YACs) are bereft of the early endosomal marker EEA1 and the lysosomal antigen LAMP1 and readily form on primary macrophages as well as macrophage-like cell lines. YAC formation requires the presence of the Yersinia virulence plasmid which encodes a type III secretion system. Unexpectedly, we found that the initial formation of YACs did not require translocation of the type III effectors into the host cell cytosol; however, the duration of YACs was markedly greater in infections using translocation-competent Y. pseudotuberculosis strains as well as strains expressing the effector YopJ. Furthermore, it was in this translocation- and YopJ-dependent phase of infection that the acidic environment was critical for Y. pseudotuberculosis survival during its interaction with macrophages. Our findings indicate that during its extracellular phase of infection Y. pseudotuberculosis initiates and then, by a separate mechanism, stabilizes the formation of a highly intricate structure on the surface of the macrophage that is disengaged from the endocytic pathway.

  • 42.
    Bamyaci, Sarp
    et al.
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine). Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR). Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS).
    Ekestubbe, Sofie
    Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology). Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR). Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS).
    Nordfelth, Roland
    Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology). Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR). Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS).
    Ertmann, Saskia
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine). Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR).
    Edgren, Tomas
    Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology). Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR).
    Forsberg, Åke
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine). Umeå University, Faculty of Medicine, Umeå Centre for Microbial Research (UCMR). Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS).
    YopN is required for efficient translocation and virulence in Yersinia pseudotuberculosisManuscript (preprint) (Other academic)
  • 43. Baptista, Marisa A. P.
    et al.
    Keszei, Marton
    Oliveira, Mariana
    Sunahara, Karen K. S.
    Andersson, John
    Dahlberg, Carin I. M.
    Worth, Austen J.
    Lieden, Agne
    Kuo, I-Chun
    Wallin, Robert P. A.
    Snapper, Scott B.
    Eidsmo, Liv
    Scheynius, Annika
    Karlsson, Mikael C. I.
    Bouma, Gerben
    Burns, Siobhan O.
    Forsell, Mattias N. E.
    Umeå University, Faculty of Medicine, Department of Clinical Microbiology, Immunology/Immunchemistry.
    Thrasher, Adrian J.
    Nylén, Susanne
    Westerberg, Lisa S.
    Deletion of Wiskott-Aldrich syndrome protein triggers Rac2 activity and increased cross-presentation by dendritic cells2016In: Nature Communications, ISSN 2041-1723, E-ISSN 2041-1723, Vol. 7, 12175Article in journal (Refereed)
    Abstract [en]

    Wiskott-Aldrich syndrome (WAS) is caused by loss-of-function mutations in the WASp gene. Decreased cellular responses in WASp-deficient cells have been interpreted to mean that WASp directly regulates these responses in WASp-sufficient cells. Here, we identify an exception to this concept and show that WASp-deficient dendritic cells have increased activation of Rac2 that support cross-presentation to CD8(+) T cells. Using two different skin pathology models, WASp-deficient mice show an accumulation of dendritic cells in the skin and increased expansion of IFN gamma-producing CD8(+) T cells in the draining lymph node and spleen. Specific deletion of WASp in dendritic cells leads to marked expansion of CD8(+) T cells at the expense of CD4(+) T cells. WASp-deficient dendritic cells induce increased cross-presentation to CD8(+) T cells by activating Rac2 that maintains a near neutral pH of phagosomes. Our data reveals an intricate balance between activation of WASp and Rac2 signalling pathways in dendritic cells.

  • 44. Barbus, Sebastian
    et al.
    Tews, Björn
    Karra, Daniela
    Hahn, Meinhard
    Radlwimmer, Bernhard
    Delhomme, Nicolas
    Hartmann, Christian
    Felsberg, Jörg
    Krex, Dietmar
    Schackert, Gabriele
    Martinez, Ramon
    Reifenberger, Guido
    Lichter, Peter
    Differential retinoic acid signaling in tumors of long- and short-term glioblastoma survivors.2011In: Journal of the National Cancer Institute, ISSN 0027-8874, E-ISSN 1460-2105, Vol. 103, no 7Article in journal (Refereed)
    Abstract [en]

    Although the prognosis of most glioblastoma patients is poor, 3%-5% patients show long-term survival of 36 months or longer after diagnosis. To study the differences in activation of biochemical pathways, we performed mRNA and protein expression analyses of primary glioblastoma tissues from 11 long-term survivors (LTS; overall survival ≥ 36 months) and 12 short-term survivors (STS; overall survival ≤ 6 months). The mRNA expression ratio of the retinoic acid transporters fatty acid-binding protein 5 (FABP5) and cellular retinoic acid-binding protein 2 (CRABP2), which regulate the differential delivery of retinoic acid to either antioncogenic retinoic acid receptors or prooncogenic nuclear receptor peroxisome proliferator-activated receptor delta, was statistically significantly higher in the tumor tissues of STS than those of LTS (median ratio in STS tumors = 3.64, 10th-90th percentile = 1.43-4.54 vs median ratio in LTS tumors = 1.42, 10th-90th percentile = -0.98 to 2.59; P < .001). High FABP5 protein expression in STS tumors was associated with highly proliferating tumor cells and activation of 3-phosphoinositide-dependent protein kinase-1 and v-akt murine thymoma viral oncogene homolog. The data suggest that retinoic acid signaling activates different targets in glioblastomas from LTS and STS. All statistical tests were two-sided.

  • 45.
    Barcena-Uribarri, Ivan
    et al.
    Universität Würzburg, Germany.
    Thein, Marcus
    Universität Würzburg and Jacobs University Bremen, Germany.
    Maier, Elke
    Universität Würzburg, Germany.
    Bonde, Mari
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    Bergström, Sven
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine).
    Benz, Roland
    Universität Würzburg, Germany.
    Use of Nonelectrolytes Reveals the Channel Size and Oligomeric Constitution of the Borrelia burgdorferi P66 Porin2013In: PLoS ONE, ISSN 1932-6203, Vol. 8, no 11, e78272- p.Article in journal (Refereed)
    Abstract [en]

    In the Lyme disease spirochete Borrelia burgdorferi, the outer membrane protein P66 is capable of pore formation with an atypical high single-channel conductance of 11 nS in 1 M KCl, which suggested that it could have a larger diameter than 'normal' Gram-negative bacterial porins. We studied the diameter of the P66 channel by analyzing its single-channel conductance in black lipid bilayers in the presence of different nonelectrolytes with known hydrodynamic radii. We calculated the filling of the channel with these nonelectrolytes and the results suggested that nonelectrolytes (NEs) with hydrodynamic radii of 0.34 nm or smaller pass through the pore, whereas neutral molecules with greater radii only partially filled the channel or were not able to enter it at all. The diameter of the entrance of the P66 channel was determined to be <= 1.9 nm and the channel has a central constriction of about 0.8 nm. The size of the channel appeared to be symmetrical as judged from one-sidedness of addition of NEs. Furthermore, the P66-induced membrane conductance could be blocked by 80-90% by the addition of the nonelectrolytes PEG 400, PEG 600 and maltohexaose to the aqueous phase in the low millimolar range. The analysis of the power density spectra of ion current through P66 after blockage with these NEs revealed no chemical reaction responsible for channel block. Interestingly, the blockage of the single-channel conductance of P66 by these NEs occurred in about eight subconductance states, indicating that the P66 channel could be an oligomer of about eight individual channels. The organization of P66 as a possible octamer was confirmed by Blue Native PAGE and immunoblot analysis, which both demonstrated that P66 forms a complex with a mass of approximately 460 kDa. Two dimension SDS PAGE revealed that P66 is the only polypeptide in the complex.

  • 46. Barfeld, Stefan J
    et al.
    Fazli, Ladan
    Persson, Margareta
    Marjavaara, Lisette
    Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics. Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS).
    Urbanucci, Alfonso
    Kaukoniemi, Kirsi M
    Rennie, Paul S
    Ceder, Yvonne
    Chabes, Andrei
    Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics. Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS).
    Visakorpi, Tapio
    Mills, Ian G
    Myc-dependent purine biosynthesis affects nucleolar stress and therapy response in prostate cancer2015In: OncoTarget, ISSN 1949-2553, Vol. 6, no 14, 12587-12602 p.Article in journal (Refereed)
    Abstract [en]

    The androgen receptor is a key transcription factor contributing to the development of all stages of prostate cancer (PCa). In addition, other transcription factors have been associated with poor prognosis in PCa, amongst which c-Myc (MYC) is a well-established oncogene in many other cancers. We have previously reported that the AR promotes glycolysis and anabolic metabolism; many of these metabolic pathways are also MYC-regulated in other cancers. In this study, we report that in PCa cells de novo purine biosynthesis and the subsequent conversion to XMP is tightly regulated by MYC and independent of AR activity. We characterized two enzymes, PAICS and IMPDH2, within the pathway as PCa biomarkers in tissue samples and report increased efficacy of established anti-androgens in combination with a clinically approved IMPDH inhibitor, mycophenolic acid (MPA). Treatment with MPA led to a significant reduction in cellular guanosine triphosphate (GTP) levels accompanied by nucleolar stress and p53 stabilization. In conclusion, targeting purine biosynthesis provides an opportunity to perturb PCa metabolism and enhance tumour suppressive stress responses.

  • 47.
    Baudin, Maria
    et al.
    Umeå University, Faculty of Medicine, Department of Clinical Microbiology, Virology.
    Hossain, Delowar
    Evander, Magnus
    Umeå University, Faculty of Medicine, Department of Clinical Microbiology, Virology.
    Importance of charge interactions in Rift Valley fever virus attachment to host cellsManuscript (preprint) (Other academic)
    Abstract [en]

    The mosquito-borne Rift Valley fever virus (RVFV) cause disease in both humans and animals and can infect a large range of animals as well as humans. Many different cell types are infected both in vivo and in vitro. To enter a cell the virus needs to attach and enter, and this initial binding to the host cell surface could depend on both general mechanisms, and different specific receptors. Our aim was to characterize determinants for RVFV entry into its host cells.To examine RVFV attachment to host cells we based our experimental assay on RVF virus-like particles containing a reporter gene. The enveloped RVFV uses protruding glycoproteins (Gn and Gc) for attachment and entry and to investigate potential virus-cell surface interactions, the net surface charge of the glycoproteins was first calculated. The RVFV glycoprotein Gn had a predicted isoelectric point (pI) of 7.6 and a net positive charge of +6.9 at pH 7.0, suggesting a charge interaction between the Gn ectodomain and the negatively charged cell surface. RVFV Gc on the other hand, was highly negatively charged, -12.8 at neutral pH, most probably reflecting that Gc is not exposed until after receptor binding. To characterize the general conditions needed for RVFV attachment, cells or virus were treated with various compounds. Both sodium chloride and the negatively charged heparin inhibited RVF virus-like particle infection, strongly indicating that viral binding was charge-dependent. Treatment with sodium periodate pointed to a carbohydrate structure as a cellular interaction partner. Removal of sialic acid or heparan sulfate receptors on the cell surface by enzymatic treatment and blocking of the heparan sulfate receptor did not inhibit virus attachment.In conclusion, RVFV binding to host cells was charge dependent and the results point to a carbohydrate structure with negative charge as a potential attachment factor.

  • 48. Baumann, Anne
    et al.
    Jorge-Finnigan, Ana
    Jung-KC, Kunwar
    Sauter, Alexander
    Horvath, Istvan
    Morozova-Roche, Ludmilla A.
    Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics.
    Martinez, Aurora
    Tyrosine Hydroxylase Binding to Phospholipid Membranes Prompts Its Amyloid Aggregation and Compromises Bilayer Integrity2016In: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 6, 39488Article in journal (Refereed)
    Abstract [en]

    Tyrosine hydroxylase (TH), a rate-limiting enzyme in the synthesis of catecholamine neurotransmitters and hormones, binds to negatively charged phospholipid membranes. Binding to both large and giant unilamellar vesicles causes membrane permeabilization, as observed by efflux and influx of fluorescence dyes. Whereas the initial protein-membrane interaction involves the N-terminal tail that constitutes an extension of the regulatory ACT-domain, prolonged membrane binding induces misfolding and self-oligomerization of TH over time as shown by circular dichroism and Thioflavin T fluorescence. The gradual amyloid-like aggregation likely occurs through cross-beta interactions involving aggregation-prone motives in the catalytic domains, consistent with the formation of chain and ring-like protofilaments observed by atomic force microscopy in monolayer-bound TH. PC12 cells treated with the neurotoxin 6-hydroxydopamine displayed increased TH levels in the mitochondrial fraction, while incubation of isolated mitochondria with TH led to a decrease in the mitochondrial membrane potential. Furthermore, cell-substrate impedance and viability assays showed that supplementing the culture media with TH compromises cell viability over time. Our results revealed that the disruptive effect of TH on cell membranes may be a cytotoxic and pathogenic factor if the regulation and intracellular stability of TH is compromised.

  • 49.
    Beier, Frank
    et al.
    Institute for Experimental Medicine, University of Erlangen-Nürnberg, Erlangen, Germany.
    Eerola, Iiro
    Department of Medical Biochemistry and Molecular Biology, University of Turku, Turku, Finland.
    Vuorio, Eero
    Department of Medical Biochemistry and Molecular Biology, University of Turku, Turku, Finland.
    Luvalle, Phyllis
    Department of Medical Biochemistry, University of Calgary, Calgary, Alberta, Canada.
    Reichenberger, Ernest
    Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA.
    Bertling, Wolf
    Institute for Genetics, University of Bayreuth, Bayreuth, Germany.
    von der Mark, Klaus
    Institute for Experimental Medicine, University of Erlangen-Nürnberg, Erlangen, Germany.
    Lammi, Mikko
    Variability in the upstream promoter and intron sequences of the human, mouse and chick type X collagen genes.1996In: Matrix Biology, ISSN 0945-053X, E-ISSN 1569-1802, Vol. 15, no 6, 415-422 p., 9049979Article in journal (Refereed)
    Abstract [en]

    The type X collagen gene is specifically expressed in hypertrophic chondrocytes during endochondral ossification. Transcription of the type X collagen gene by these differentiated cells is turned on at the same time as transcription of several other cartilage specific genes is switched off and before mineralization of the matrix begins. Analysis of type X collagen promoters for regulatory regions in different cell culture systems and in transgenic mice has given contradictory results suggesting major differences among species. To approach this problem, we have determined the nucleotide sequences of the two introns and upstream promoter sequences of the human and mouse type X collagen genes and compared them with those of bovine and chick. Within the promoter regions, we found three boxes of homology which are nearly continuous in the human gene but have interruptions in the murine gene. One of these interruptions was identified as a complex 1.9 kb repetitive element with homology to LINE, B1, B2 and long terminal repeat sequences. Regulatory elements of the human type X collagen gene are located upstream of the region where the repetitive element is inserted in the mouse gene, making it likely that the repetitive element is inserted between the coding region and regulatory sequences of the murine gene without interfering with its expression pattern. We also compared the sequences of the introns of both genes and found strong conservation. Comparisons of the mammalian sequences with promoter and first intron sequences of the chicken type X collagen gene revealed that only the proximal 120 nucleotides of the promoter were conserved, whereas all other sequences displayed no obvious homology to the murine and human sequences.

  • 50.
    Beier, Frank
    et al.
    Institute Experimental Medicine, University of Erlangen-Nürnberg, Erlangen, Germany.
    Lammi, Mikko
    Institute Experimental Medicine, University of Erlangen-Nürnberg, Erlangen, Germany.
    Bertling, Wolf
    Institute for Genetics, University of Bayreuth, Bayreuth, Germany.
    von der Mark, Klaus
    Institute Experimental Medicine, University of Erlangen-Nürnberg, Erlangen, Germany.
    Transcriptional regulation of the human type X collagen gene expression.1996In: Annals of the New York Academy of Sciences, ISSN 0077-8923, E-ISSN 1749-6632, Vol. 785, 209-211 p., 8702131Article in journal (Refereed)
1234567 1 - 50 of 730
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf