umu.sePublikationer
Ändra sökning
Avgränsa sökresultatet
1 - 3 av 3
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Cavka, Adnan
    et al.
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Wallenius, Anna
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Alriksson, Björn
    Nilvebrant, Nils-Olof
    Jönsson, Leif J
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Ozone detoxification of steam-pretreated Norway spruce2015Ingår i: Biotechnology for Biofuels, ISSN 1754-6834, E-ISSN 1754-6834, Vol. 8, artikel-id 196Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Background: Pretreatment of lignocellulose for biochemical conversion commonly results in formation of by-products that inhibit microorganisms and cellulolytic enzymes. To make bioconversion processes more efficient, inhibition problems can be alleviated through conditioning. Ozone is currently commercially employed in pulp and paper production for bleaching, as it offers the desirable capability to disrupt unsaturated bonds in lignin through an ionic reaction known as ozonolysis. Ozonolysis is more selective towards lignin than cellulose, for instance, when compared to other oxidative treatment methods, such as Fenton's reagent. Ozone may thus have desirable properties for conditioning of pretreated lignocellulose without concomitant degradation of cellulose or sugars. Ozone treatment of SO2- impregnated steam-pretreated Norway spruce was explored as a potential approach to decrease inhibition of yeast and cellulolytic enzymes. This novel approach was furthermore compared to some of the most effective methods for conditioning of pretreated lignocellulose, i.e., treatment with alkali and sodium dithionite. Results: Low dosages of ozone decreased the total contents of phenolics to about half of the initial value and improved the fermentability. Increasing ozone dosages led to almost proportional increase in the contents of total acids, including formic acid, which ultimately led to poor fermentability at higher ozone dosages. The decrease of the contents of furfural and 5-hydroxymethylfurfural was inversely proportional (R-2 > 0.99) to the duration of the ozone treatment, but exhibited no connection with the fermentability. Ozone detoxification was compared with other detoxification methods and was superior to treatment with Fenton's reagent, which exhibited no positive effect on fermentability. However, ozone detoxification was less efficient than treatment with alkali or sodium dithionite. High ozone dosages decreased the inhibition of cellulolytic enzymes as the glucose yield was improved with 13 % compared to that of an untreated control. Conclusions: Low dosages of ozone were beneficial for the fermentation of steam-pretreated Norway spruce, while high dosages decreased the inhibition of cellulolytic enzymes by soluble components in the pretreatment liquid. While clearly of interest for conditioning of lignocellulosic hydrolysates, future challenges include finding conditions that provide beneficial effects both with regard to enzymatic saccharification and microbial fermentation.

  • 2. Chen, Zhi-Qiang
    et al.
    Abramowicz, Konrad
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.
    Raczkowski, Rafal
    Ganea, Stefana
    Wu, Harry X.
    Lundqvist, Sven-Olof
    Mörling, Tommy
    Sjöstedt de Luna, Sara
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Institutionen för matematik och matematisk statistik.
    Gil, Maria Rosario Garcia
    Mellerowicz, Ewa J.
    Method for accurate fiber length determination from increment cores for large-scale population analyses in Norway spruce2016Ingår i: Holzforschung, ISSN 0018-3830, E-ISSN 1437-434X, Vol. 70, nr 9, s. 829-838Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Fiber (tracheid) length is an important trait targeted for genetic and silvicultural improvement. Such studies require large-scale non-destructive sampling, and accurate length determination. The standard procedure for non-destructive sampling is to collect increment cores, singularize their cells by maceration, measure them with optical analyzer and apply various corrections to suppress influence of non-fiber particles and cut fibers, as fibers are cut by the corer. The recently developed expectation-maximization method (EM) not only addresses the problem of non-fibers and cut fibers, but also corrects for the sampling bias. Here, the performance of the EM method has been evaluated by comparing it with length-weighing and squared length-weighing, both implemented in fiber analyzers, and with microscopy data for intact fibers, corrected for sampling bias, as the reference. This was done for 12-mm increment cores from 16 Norway spruce (Picea abies (L.) Karst) trees on fibers from rings 8-11 (counted from pith), representing juvenile wood of interest in breeding programs. The EM-estimates provided mean-fiber-lengths with bias of only +2.7% and low scatter. Length-weighing and length2-weighing gave biases of -7.3% and +9.3%, respectively, and larger scatter. The suggested EM approach constitutes a more accurate non-destructive method for fiber length (FL) determination, expected to be applicable also to other conifers.

  • 3.
    Wang, Zhao
    Umeå universitet, Teknisk-naturvetenskapliga fakulteten, Kemiska institutionen.
    Recalcitrance of wood to biochemical conversion: feedstock properties, pretreatment, saccharification, and fermentability2018Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
    Abstract [en]

    Lignocellulose is an inexpensive and abundant renewable resource that can be used to produce advanced biofuels, green chemicals, and other bio-based products. Pretreatment and efficient enzymatic saccharification are essential features of bioconversion of lignocellulosic biomass. The aims of the research were to achieve a better understanding of the recalcitrance of woody biomass to bioconversion, to explore different pretreatment techniques that can be used to decrease the recalcitrance of the biomass and improve the digestibility of the cellulose, and to investigate by-products of acid pretreatment that cause enzymes and microorganisms to work less efficiently.

    The recalcitrance of wood from aspen, birch, and spruce was investigated before and after acid pretreatment. Before pretreatment, birch exhibited the highest recalcitrance, which was attributed to structural factors. After pretreatment, spruce showed the highest recalcitrance, which was attributed to chemical factors, such as high lignin content. Deacetylation of hybrid aspen in planta by a CE5 acetyl xylan esterase decreased the recalcitrance, and the glucose yield of enzymatic saccharification of non-pretreated wood increased with 27%.

    Pretreatment options based on ionic liquids and steam explosion were further explored. The effects of the anionic constituents of a series of imidazolium-based ionic liquids on pretreatment of aspen and spruce were investigated. [HSO4]− was efficient only for aspen, which was attributed to acid degradation of xylan. [MeCO2]− was efficient for both aspen and spruce, which was attributed to its capability to create a disordered cell wall structure rather than to removal of lignin and hemicellulose. A comparison was made between using sulfuric acid and sulfur dioxide for pretreatment of spruce. Although sulfur dioxide resulted in a pretreatment liquid that was more inhibitory to both enzymes and yeast, it was still superior to pretreatment with sulfuric acid, a phenomenon that was attributed to the particle size of the pretreated material.

    In a comparison of microbial inhibitors in pretreatment liquids from steam explosion of spruce, formaldehyde was found to be the most important inhibitor of yeast. Enzyme inhibition by catalytically non-productive adsorption to lignins and pseudo-lignin was investigated using quantitative proteomics. The results indicate that protein adsorption to pseudo-lignin can be as extensive as adsorption to real lignin. 

1 - 3 av 3
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf