umu.sePublications
Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Hellström, Thomas
    et al.
    Umeå University, Faculty of Science and Technology, Department of Computing Science.
    Ringdahl, Ola
    Umeå University, Faculty of Science and Technology, Department of Computing Science.
    A software framework for agricultural and forestry robots2013In: Industrial robot, ISSN 0143-991X, E-ISSN 1758-5791, Vol. 40, no 1, p. 20-26Article in journal (Refereed)
    Abstract [en]

    Purpose: The purpose of this paper is to describe a generic software framework for development of agricultural and forestry robots. The primary goal is to provide generic high-level functionality and to encourage distributed and structured programming, thus leading to faster and simplified development of robots. A secondary goal is to investigate the value of several architecture views when describing different software aspects of a robotics system.

    Design/methodology/approach: The framework is constructed with a hybrid robot architecture, with a static state machine that implements a flow diagram describing each specific robot. Furthermore, generic modules for GUI, resource management, performance monitoring, and error handling are included. The framework is described with logical, development, process, and physical architecture views.

    Findings: The multiple architecture views provide complementary information that is valuable both during and after the design phase. The framework has been shown to be efficient and time saving when integrating work by several partners in several robotics projects. Although the framework is guided by the specific needs of harvesting agricultural robots, the result is believed to be of general value for development also of other types of robots.

    Originality/value: In this paper, the authors present a novel generic framework for development of agricultural and forestry robots. The robot architecture uses a state machine as replacement for the planner commonly found in other hybrid architectures. The framework is described with multiple architecture views.

1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf