umu.sePublications
Change search
Refine search result
1 - 16 of 16
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Allard, Ingrid
    et al.
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Olofsson, Thomas
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Östin, Ronny
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    A methodology to investigate the building energy performance gap2015In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118Article in journal (Other academic)
    Abstract [en]

    In order to evaluate compliance with requirements on building energy performance, it is necessary to find strategies to process discrepancies from the results of forward simulations in the design stage and of measurements in the operated stage. The gap between designed performance and measured performance is referred to as the “performance gap”. It can be divided into a procurement gap (between intended design and verified performance) and an operational gap (between verified performance and non-normalized measurements).  

    In this work we introduced a methodology for performance gap analysis, based on separating the procurement- and operational gap. An important component to do this is calibrations of calculations using measured data. The suggested methodology allows for more detailed verifications of building energy performance and can be used to study how indicators reflect the performance gap. The proposed methodology is tested using data from a well-documented and measured operated single family building, in sub-arctic climate in Sweden.

    The indicators studied in the verification were carefully analyzed. The methodology was found reliable based on the obtained results and a sensitivity analysis. An overall observation is that the applicability of the methodology depends on the accuracy of the hybrid method. The accuracy of the performance gap analysis per definition depends on the available information of the operated building, and consequently to access to extensive measured data.

  • 2.
    Biswas, Amit
    et al.
    Luleå Tekniska Universitet.
    Rudolfsson, Magnus
    Sveriges Lantbruksuniversitet.
    Broström, Markus
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Umeki, Kentaro
    Luleå Tekniska Universitet.
    Effect of pelletizing conditions on combustion behaviour of single wood pellet2014In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 119, no 15, p. 79-84Article in journal (Refereed)
    Abstract [en]

    This paper presents how pelletizing die temperature and moisture content affect combustion behaviour of single wood pellet. Pine wood particles with two different moisture contents (i.e. 1 wt.% and 12 wt.%) were pelletized in a laboratory-scale single pelletizer (single die pellets) at die temperature of 20, 100, 150 and 200 °C. The pellets were combusted in a laboratory scale furnace at 800 °C. Time required for single pellet combustion generally increased with both increase of pelletizing temperature and moisture content of biomass. In addition, combustion behaviour of single die pellets was significantly different than those produced in a pilot scale pelletizing plant (semi-industrial scale pellet). That difference was due to variation in physical properties of pellets (e.g. density, and morphology).

  • 3. Bozaghian, Marjan
    et al.
    Rebbling, Anders
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Larsson, Sylvia H.
    Thyrel, Mikael
    Xiong, Shaojun
    Skoglund, Nils
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics. Luleå University of Technology, Department of Engineering Sciences and Mathematics, Energy Engineering, S-971 87 Luleå, Sweden.
    Combustion characteristics of straw stored with CaCO3 in bubbling fluidized bed using quartz and olivine as bed materials2018In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 212, p. 1400-1408Article in journal (Refereed)
    Abstract [en]

    The addition of Ca-containing compounds can reduce mass loss from agricultural biomass during storage. The resulting alkaline environment is detrimental to microorganisms present in the material. Theoretical analysis of Ca-containing biomass suggests that combustion properties are improved with respect to slagging. To validate the theoretical calculations, barley straw was utilized as a typical model agricultural biomass and combustion characteristics of straw pre-treated with 2 and 4 w/w% CaCO3 for combined improvement of storage and combustion properties were determined through combustion at 700 degrees C in a bench-scale bubbling fluidized-bed reactor (5 kW) using quartz and olivine sand as bed materials. The combustion characteristics were determined in terms of elemental composition and compound identification in bed ash and bed material including agglomerates, fly ash, particulate matter as well as flue gas measurements. The addition of CaCO3 to straw had both positive and negative effects on its combustion characteristics. Both additive levels raised the total de fluidization temperature for both quartz and olivine, and olivine proved to be less susceptible than quartz to reactions with alkali. With Ca-additives, the composition of deposits and fine particulate matter changed to include higher amounts of KCl potentially leading to higher risk for alkali chloride-induced corrosion. Flue gas composition was heavily influenced by CaCO3 additives by significantly elevated CO concentrations likely related to increased levels of gaseous alkali compounds. The results suggest that it is necessary to reduce gaseous alkali compounds, e.g. through kaolin or sulphur addition, if alkali-rich straw is to be co-combusted with Ca-rich biomass or large amounts of Ca-additives.

  • 4. Deng, Na
    et al.
    He, Guansong
    Gao, Yuan
    Yang, Bin
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Zhao, Jun
    He, Shunming
    Tian, Xue
    Comparative analysis of optimal operation strategies for district heating and cooling system based on design and actual load2017In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 205, p. 577-588Article in journal (Refereed)
    Abstract [en]

    Computational load significantly influences energy and cost savings when developing an operation strategy for a district heating and cooling system. In this study, a model was identified to study the effects of the difference between design load and actual load on an optimal operation strategy. The established model is strongly dependent on the economy principle, and the proposed optimal strategy could achieve a dynamic balance between the users' load and the system energy supply. This model was validated at 30% load rate, which demonstrated an obvious cost saving of 63.6% under the actual load and 42.2% under the design load. Based on the current strategy, the optimal strategy at different load rates was analyzed with respect to two characteristics of each subsystem: energy outputs and operation costs. Furthermore, in the optimal strategy, changes in total operation costs and cost savings rates under different load rates are also discussed. The results showed that, when the load rate was changed from 30 to 75%, the savings rates based on the design load were 42.2, 17.9, 2.5, and 12.6%, and the savings rates based on the actual load were 63.6, 49.8, 34.3, and 25.7%, respectively. Based on the actual load, the energy savings advantage of the optimal operation strategy could be maximized, in particular, during the initial stage of project construction. Furthermore, the commercial software MATLAB was used for programming and calculations. The simulation results indicated that the application of the combined cooling, heating, and power system could significantly improve the cost-effectiveness.

  • 5.
    Larsson, Sylvia H.
    et al.
    Swedish University of Agricultural Sciences, Unit of Biomass Technology and Chemistry.
    Rudolfsson, Magnus
    Swedish University of Agricultural Sciences, Unit of Biomass Technology and Chemistry.
    Nordwaeger, Martin
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics, Energy Technology and Thermal Process Chemistry.
    Olofsson, Ingemar
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics, Energy Technology and Thermal Process Chemistry.
    Samuelsson, Robert
    Swedish University of Agricultural Sciences, Unit of Biomass Technology and Chemistry.
    Effects of moisture content, torrefaction temperature, and die temperature in pilot scale pelletizing of torrefied Norway spruce2013In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 102, p. 827-832Article in journal (Refereed)
    Abstract [en]

    Pilot scale pelletizing of torrefied Norway spruce was performed in a factorial design with controlled factors at two levels: material moisture content (11% and 15%) and torrefaction temperature (270 and 300 °C), and die temperature as an uncontrolled factor (60–105 °C). Compared to commercial wood pellets, produced pellets had comparable bulk densities (630–710 kg/m3) but lower pellet durability (80–90%). Energy consumption for pelletizing of torrefied materials was approximately 100% higher than for softwood pelletizing, despite using a much shorter die channel length (35 vs. 55 mm:s), and the amounts of fines were high (10–30%). Die temperature showed a strong positive correlation with pellet production rate. Material moisture content had little influence on pellet quality and production rate, but addition of water created handling problems due to bad flow behavior.

  • 6. Lidberg, Tina
    et al.
    Gustafsson, Markus
    Myhren, Jon Are
    Olofsson, Thomas
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Ödlund, Louise
    Environmental impact of energy refurbishment of buildings within different district heating systems2018In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 227, p. 231-238Article in journal (Refereed)
  • 7. Nair, Gireesh
    et al.
    Gustavsson, Leif
    Mahapatra, Krushna
    Owners perception on the adoption of building envelope energy efficiency measures in Swedish detached houses2010In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 87, no 7, p. 2411-2419Article in journal (Refereed)
  • 8.
    Nair, Gireesh
    et al.
    Mittuniversitetet, Institutionen för teknik och hållbar utveckling.
    Mahapatra, Krushna
    Linnéuniversitetet, Växjö.
    Gustavsson, Leif
    Linnéuniversitetet, Växjö.
    Implementation of energy efficient windows in Swedish single-family houses2012In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 89, no 1, p. 329-338Article in journal (Refereed)
    Abstract [en]

    A questionnaire survey of 1010 homeowners in Jämtland and Västernorrland, which are two counties in central Sweden, was conducted to understand the factors influencing their decision to install energy-efficient windows. We complemented this survey with an interview of 12 window sellers/installers in the county Jämtland. The annual energy cost reduction, age, and condition of the windows were the most important reasons for the window replacement decision. Approximately 80% of the respondents replaced their windows with energy-efficient windows with U-value of 1.2 W/m2 K. Condensation problems, perceived higher prices, and lack of awareness about windows with lower U-values were important reasons for non-adoption of more energy-efficient windows. Window sellers/installers have a strong influence on homeowners’ window selection that was indicated by the 97% of homeowners who bought the windows that were recommended to them. Sellers/installers revealed that they did not recommend windows with U-value of less than 1.2 W/m2 K because they thought that investing in such windows was not economical and because windows with U-value less than 1.2 W/m2 K could cause water condensation on the external surface of window pane.

  • 9.
    Ohlsson, K. E. Anders
    et al.
    Swedish University of Agricultural Sciences, Department of Forest Ecology and Management, Umeå, Sweden.
    Olofsson, Thomas
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Quantitative infrared thermography imaging of the density of heat flow rate through a building element surface2014In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 134, p. 499-505Article in journal (Refereed)
    Abstract [en]

    Infrared thermography is often used to record an image of the building envelope surface temperature, and thereby acquire qualitative information on its thermal insulation performance. Recently, a thermography method has evolved, which enables quantitative measurement of the 2-dimensional pattern of the density of heat flow rate (q) across the building element surface. However, based on previous estimates of its measurement uncertainty, the capacity of the thermography method to yield accurate results has been questioned. We present here an improved procedure for measurement of q, with an evaluation of measurement errors. The main improvement consists of the simultaneous measurement of surface temperature, surrounding radiative temperature, and air temperature, based on information included in one single thermal camera image. This arrangement allows for accurate measurements of small temperatures differences, and thereby reduced uncertainty in the measurement of q. The measurement bias was evaluated experimentally by a comparison of thermography results against a reference method. Under natural convective conditions, there was a 2.6 W m(-2) constant difference between the two methods. The measurement uncertainty u(q) was estimated as a function of q. Based on this, the lower limit of the measurement working range was determined to be 6 W m(-2), which corresponds to less than 10% relative uncertainty. In the case of forced convection, the thermography method yielded less reliable results. The reason for this was the sensitivity of the results to the choice of model for the convective heat transfer coefficient, and the difficulty to select the position for measurement of the wind speed, which is appropriate for this model.

  • 10.
    Olofsson, Thomas
    et al.
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Mahlia, TMI
    Modeling and simulation of the energy use in an occupied residential building in cold climate2012In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 91, no 1, p. 432-438Article in journal (Refereed)
    Abstract [en]

    In order to reduce the energy use in the building sector there is a demand for tools that can identify significant building energy performance parameters. In the work introduced in this paper presents a methodology, based on a simulation module and graphical figures, for interactive investigations of the building energy performance. The building energy use simulation program is called TEKLA and is using EN832 with an improved procedure in calculating the heat loss through the floor and the solar heat gain. The graphical figures are simple and are illustrating the savings based on retrofit measures and climate conditions. The accuracy of the TEKLA simulation was investigated on a typical single-family building in Sweden for a period of time in a space heating demand of relatively cold and mild climate. The model was found applicable for relative investigations. Further, the methodology was applied on a typical single family reference building. The climate data from three locations in Sweden were collected and a set of relevant measures were studied. The investigated examples illustrate how decisions in the early stages of the building design process can have decisive importance on the final building energy performance. (C) 2011 Elsevier Ltd. All rights reserved.

  • 11. Rudolfsson, Magnus
    et al.
    Borén, Eleonora
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Pommer, Linda
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Nordin, Anders
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Lestander, Torbjörn A.
    Combined effects of torrefaction and pelletization parameters on the quality of pellets produced from torrefied biomass2017In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 191, p. 414-424Article in journal (Refereed)
    Abstract [en]

    A combined torrefaction and pelletization study was performed at industrially relevant settings using a factorial design. First, wood chips of Scots pine were torrefied at high temperatures (291-315 degrees C) and short residence times (6-12 min), facilitating high throughput in a continuous pilot-scale torrefaction process. Then the torrefied materials were pelletized, also in pilot-scale, using varying moisture contents (MCs) (10-14%), sieve sizes (4-6 mm), and press channel lengths (PCLs) (25 and 30 mm), in all 19 batches, each of 400 kg. The resulting so called black pellets exhibited bulk densities of 558-725 kg m(-3), durabilities of 46.3-86.5%, and fines contents of 3.8-85.8%. Through multiple linear regression modelling of all 11 responses, it was found that the parameter with the greatest influence on the responses was the torrefaction temperature, followed by torrefaction time, MC, and PCL. Longer PCL and higher MC resulted in higher pellet quality, with less fines and greater bulk density and durability. Furthermore, a low torrefaction degree decreased the amount of power required for pelletization. The energy required to grind pellets into a powder (<0.5 mm) decreased with increasing torrefaction degree as expected, but also with decreasing MC before pelletizing. Pyrolysis-GC/MS analysis of thermal degradation products from the pellets revealed correlations with the torrefaction temperature and time, but no correlations with the pelletization process. These results are useful for mapping chemical changes in torrefied materials and identifying complementary torrefaction and pelletization settings. Specifically of interest is adjustment of PCLs at low intervals to better match friction properties of torrefied materials.

  • 12.
    Trubetskaya, Anna
    et al.
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Brown, Avery
    Tompsett, Geoffrey A.
    Timko, Michael T.
    Kling, Jens
    Broström, Markus
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Larsen Andersen, Mogens
    Umeki, Kentaro
    Characterization and reactivity of soot from fast pyrolysis of lignocellulosic compounds and monolignols2018In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 212, p. 1489-1500Article in journal (Refereed)
    Abstract [en]

    This study presents the effect of lignocellulosic compounds and monolignols on the yield, nanostructure and reactivity of soot generated at 1250 °C in a drop tube furnace. The structure of soot was characterized by electron microscopy techniques, Raman spectroscopy and electron spin resonance spectroscopy. The CO2 reactivity of soot was investigated by thermogravimetric analysis. Soot from cellulose was more reactive than soot produced from extractives, lignin and monolignols. Soot reactivity was correlated with the separation distances between adjacent graphene layers, as measured using transmission electron microscopy. Particle size, free radical concentration, differences in a degree of curvature and multi-core structures influenced the soot reactivity less than the interlayer separation distances. Soot yield was correlated with the lignin content of the feedstock. The selection of the extraction solvent had a strong influence on the soot reactivity. The Soxhlet extraction of softwood and wheat straw lignin soot using methanol decreased the soot reactivity, whereas acetone extraction had only a modest effect.

  • 13.
    Trubetskaya, Anna
    et al.
    Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltoft Plads, Building 229, Kgs. Lyngby 2800, Denmark.
    Jensen, Peter Arendt
    Jensen, Anker Degn
    Llamas, Angel David Garcia
    Umeki, Kentaro
    Gardini, Diego
    Kling, Jens
    Bates, Richard B.
    Glarborg, Peter
    Effects of several types of biomass fuels on the yield, nanostructure and reactivity of soot from fast pyrolysis at high temperatures2016In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 171, p. 468-482Article in journal (Refereed)
    Abstract [en]

    This study presents the effect of biomass origin on the yield, nanostructure and reactivity of soot. Soot was produced from wood and herbaceous biomass pyrolysis at high heating rates and at temperatures of 1250 and 1400 °C in a drop tube furnace. The structure of solid residues was characterized by electron microscopy techniques, X-ray diffraction and N2 adsorption. The reactivity of soot was investigated by thermogravimetric analysis. Results showed that soot generated at 1400 °C was more reactive than soot generated at 1250 °C for all biomass types. Pinewood, beechwood and wheat straw soot demonstrated differences in alkali content, particle size and nanostructure. Potassium was incorporated in the soot matrix and significantly influenced soot reactivity. Pinewood soot particles produced at 1250 °C had a broader particle size range (27.2–263 nm) compared to beechwood soot (33.2–102 nm) and wheat straw soot (11.5–165.3 nm), and contained mainly multi-core structures.

  • 14.
    Trubetskaya, Anna
    et al.
    Energy Engineering Department, Luleå University of Technology, 97187 Luleå, Sweden.
    Surup, Gerrit
    Shapiro, Alexander
    Bates, Richard B.
    Modeling the influence of potassium content and heating rate on biomass pyrolysis2017In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 194, p. 199-211Article in journal (Refereed)
    Abstract [en]

    This study presents a combined kinetic and particle model that describes the effect of potassium and heating rate during the fast pyrolysis of woody and herbaceous biomass. The model calculates the mass loss rate, over a wide range of operating conditions relevant to suspension firing. The shrinking particle model considers internal and external heat transfer limitations and incorporates catalytic effects of potassium on the product yields. Modeling parameters were tuned with experimentally determined char yields at high heating rates (&gt;200 K s−1) using a wire mesh reactor, a single particle burner, and a drop tube reactor. The experimental data demonstrated that heating rate and potassium content have significant effects on the char yield. The importance of shrinkage on the devolatilization time becomes greater with increasing particle size, but showed little influence on the char yields.

  • 15. Wagner, Katharina
    et al.
    Häggström, Gustav
    Skoglund, Nils
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics. Bioenergy 2020+ GmbH, Vienna, Austria; Institute of Chemical, Environmental & Bioscience Engineering, Technische Universität Wien, Vienna, Austria.
    Priscak, Juraj
    Kuba, Matthias
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics. Bioenergy 2020+ GmbH, Vienna, Austria; Institute of Chemical, Environmental & Bioscience Engineering, Technische Universität Wien, Vienna, Austria; Energy Engineering, Division of Energy Science, Luleå University of Technology, Luleå, Sweden.
    Öhman, Marcus
    Hofbauer, Hermann
    Layer formation mechanism of K-feldspar in bubbling fluidized bed combustion of phosphorus-lean and phosphorus-rich residual biomass2019In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 248, p. 545-554Article in journal (Refereed)
    Abstract [en]

    The use of phosphorus-rich fuels in fluidized bed combustion is one probable way to support both heat and power production and phosphorus recovery. Ash is accumulated in the bed during combustion and interacts with the bed material to form layers and/or agglomerates, possibly removing phosphorus from the bed ash fraction. To further deepen the knowledge about the difference in the mechanisms behind the ash chemistry of phosphorus -lean and phosphorus-rich fuels, experiments in a 5 kW bench-scale-fluidized bed test-rig with K-feldspar as the bed material were conducted with bark, wheat straw, chicken manure, and chicken manure admixtures to bark and straw. Bed material samples were collected and studied for layer formation and agglomeration phenomena by scanning electron microscopy combined with energy dispersive X-ray spectrometry. The admixture of phosphorus-rich chicken manure to bark changed the layer formation mechanism, shifting the chemistry to the formation of phosphates rather than silicates. The admixture of chicken manure to straw reduced the ash melting and agglomeration risk, making it possible to increase the time until defluidization of the fluidized bed occurred. The results also highlight that an increased ash content does not necessarily lead to more ash melting related problems if the ash melting temperature is high enough.

  • 16. Westerlund, Lars
    et al.
    Hermansson, Roger
    Fagerström, Jonathan
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics, Energy Technology and Thermal Process Chemistry.
    Flue gas purification and heat recovery: A biomass fired boiler supplied with an open absorption system2012In: Applied Energy, ISSN 0306-2619, E-ISSN 1872-9118, Vol. 96, p. 444-450Article in journal (Refereed)
    Abstract [en]

    A new technique for energy recovery combined with particle separation from flue gas has been tested in this project. A conventional small boiler for biofuel produces besides heat also particles to the environment through the flue gas. Decreasing the impact on the environment is desirable. Increased efficiency can be obtained if the temperature and water content of the flue gas can be further reduced. Installing an open absorption system in the heat production unit fulfils both these demands. An experimental unit has been built and tested in the last 2 years. The results show a reduction of particles in the flue gas by 33-44% compared to the ordinary system. At the same time the heat production from the unit increased by 40% when fired with wet biofuels. (C) 2012 Elsevier Ltd. All rights reserved.

1 - 16 of 16
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf