umu.sePublications
Change search
Refine search result
1 - 7 of 7
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Albán Reyes, Diana Carolina
    et al.
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Skoglund, Nils
    Umeå University, Faculty of Science and Technology, Department of Chemistry. Department of Engineering Sciences and Mathematics, Luleå University of Technology, Luleå, Sweden .
    Svedberg, Anna
    Eliasson, Bertil
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Sundman, Ola
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    The influence of different parameters on the mercerisation of cellulose for viscose production2016In: Cellulose (London), ISSN 0969-0239, E-ISSN 1572-882X, Vol. 23, no 2, p. 1061-1072Article in journal (Refereed)
    Abstract [en]

    A quantitative analysis of degree of transformation from a softwood sulphite dissolving pulp to alkalised material and the yield of this transformation as a function of the simultaneous variation of the NaOH concentration, denoted [NaOH], reaction time and temperature was performed. Samples were analysed with Raman spectroscopy in combination with multivariate data analysis and these results were confirmed by X-ray diffraction. Gravimetry was used to measure the yield. The resulting data were related to the processing conditions in a Partial Least Square regression model, which made it possible to explore the relevance of the three studied variables on the responses. The detailed predictions for the interactive effects of the measured parameters made it possible to determine optimal conditions for both yield and degree of transformation in viscose manufacturing. The yield was positively correlated to the temperature from room temperature up to 45 A degrees C, after which the relation was negative. Temperature was found to be important for the degree of transformation and yield. The time to reach a certain degree of transformation (i.e. mercerisation) depended on both temperature and [NaOH]. At low temperatures and high [NaOH], mercerisation was instantaneous. It was concluded that the size of fibre particles (mesh range 0.25-1 mm) had no influence on degree of transformation in viscose processing conditions, apparently due to the quick reaction with the excess of NaOH.

  • 2.
    Albán Reyes, Diana Carolina
    et al.
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Stridh, Kjell
    AkzoNobel, Stenungsund, Sverige.
    de Wit, Paul P.
    AkzoNobel, Arnhem, The Netherlands.
    Sundman, Ola
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Is there a diffusion of alkali in the activation of dissolving cellulose pulp at low NAOH stoichiometric excess?2019In: Cellulose (London), ISSN 0969-0239, E-ISSN 1572-882X, Vol. 26, no 2, p. 1297-1308Article in journal (Refereed)
    Abstract [en]

    We conducted a quantitative study, following the degree of activation (i.e. the transformation to alkali cellulose, denoted as DoA) over time for dissolving cellulose pulp treated with different [NaOH] at low NaOH/anhydroglucose unit stoichiometric ratio (denoted as (r) ≤ 2.6). Our quantitative approach was based on Raman spectroscopy data, evaluated by partial least squares regression modelling. The results show strong influence of the (r) on DoA (increasing from DoA= 45% at (r) = 0.8, to DoA = 85% at (r) = 2.6), and its complex dependence on [NaOH]. At (r) = 0.8 the highest DoA (DoA ≳ 60%) was found at 30% [NaOH], while at (r) =1.3 it was found at 20% [NaOH] (DoA ≳ 80%). Although activation of cellulose happens in minutes at the studied temperature (30 °C), it was found that the reaction may be slow when a low (r) is used. A gradual increase of the DoA from ≈ 30% to ≈ 70% in time was seen when samples were activated with 30% [NaOH] at (r) = 0.8. At the same (r), a similar increase of DoA from ≈ 30 % to ≈ 60 % was also observed when 40% [NaOH] was used. Slow diffusion of NaOH through poorly swollen cellulose fibres is proposed as an explanation for this phenomenon. Lastly, solid-state CP/MAS NMR measurements suggest that at a fixed temperature, the Na-Cell allomorph mostly depends on [NaOH]. However, in the transition area between Na-Cell I and Na-Cell II, its influence might be affected by (r). 

  • 3. Bergenstråhle-Wohlert, Malin
    et al.
    Berglund, Lars A
    Brady, John W
    Larsson, P Tomas
    Westlund, Per-Olof
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Wohlert, Jakob
    Concentration enrichment of urea at cellulose surfaces: results from molecular dynamics simulations and NMR spectroscopy2012In: Cellulose (London), ISSN 0969-0239, E-ISSN 1572-882X, Vol. 19, no 1, p. 1-12Article in journal (Refereed)
    Abstract [en]

    A combined solid-state NMR and Molecular Dynamics simulation study of cellulose in urea aqueous solution and in pure water was conducted. It was found that the local concentration of urea is significantly enhanced at the cellulose/solution interface. There, urea molecules interact directly with the cellulose through both hydrogen bonds and favorable dispersion interactions, which seem to be the driving force behind the aggregation. The CP/MAS 13C spectra was affected by the presence of urea at high concentrations, most notably the signal at 83.4 ppm, which has previously been assigned to C4 atoms in cellulose chains located at surfaces parallel to the (110) crystallographic plane of the cellulose Iβ crystal. Also dynamic properties of the cellulose surfaces, probed by spin-lattice relaxation time 13CT 1 measurements of C4 atoms, are affected by the addition of urea. Molecular Dynamics simulations reproduce the trends of the T 1measurements and lends new support to the assignment of signals from individual surfaces. That urea in solution is interacting directly with cellulose may have implications on our understanding of the mechanisms behind cellulose dissolution in alkali/urea aqueous solutions.

  • 4. Berglund, Linn
    et al.
    Anugwom, Ikenna
    Umeå University, Faculty of Science and Technology, Department of Chemistry. Laboratory of Industrial Chemistry and Reaction Engineering, Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Turku, Finland.
    Hedenström, Mattias
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Aitomäki, Yvonne
    Mikkola, Jyri-Pekka
    Umeå University, Faculty of Science and Technology, Department of Chemistry. Laboratory of Industrial Chemistry and Reaction Engineering, Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Turku, Finland.
    Oksman, Kristiina
    Switchable ionic liquids enable efficient nanofibrillation of wood pulp2017In: Cellulose (London), ISSN 0969-0239, E-ISSN 1572-882X, Vol. 24, no 8, p. 3265-3279Article in journal (Refereed)
    Abstract [en]

    Use of switchable ionic liquid (SIL) pulp offers an efficient and greener technology to produce nanofibers via ultrafine grinding. In this study, we demonstrate that SIL pulp opens up a mechanically efficient route to the nanofibrillation of wood pulp, thus providing both a low cost and chemically benign route to the production of cellulose nanofibers. The degree of fibrillation during the process was evaluated by viscosity and optical microscopy of SIL treated, bleached SIL treated and a reference pulp. Furthermore, films were prepared from the fibrillated material for characterization and tensile testing. It was observed that substantially improved mechanical properties were attained as a result of the grinding process, thus signifying nanofibrillation. Both SIL treated and bleached SIL treated pulps were fibrillated into nanofibers with fiber diameters below 15 nm thus forming networks of hydrophilic nature with an intact crystalline structure. Notably, it was found that the SIL pulp could be fibrillated more efficiently than traditional pulp since nanofibers could be produced with more than 30% less energy when compared to the reference pulp. Additionally, bleaching reduced the energy demand by further 16%. The study demonstrated that this switchable ionic liquid treatment has considerable potential in the commercial production of nanofibers due to the increased efficiency in fibrillation.

  • 5. Jilal, Issam
    et al.
    El Barkany, Soufian
    Bahari, Zahra
    Sundman, Ola
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    El Idrissi, Abderahmane
    Salhi, Amin
    Abou-Salama, Mohamed
    Loutou, Mohamed
    Amhamdi, Hassan
    Unconventional synthesis, characterization and theoretical study (HF and DFT computations) of new cellulosic copper complex: benzyloxyethyl cellulose copper (CuBEC)2018In: Cellulose (London), ISSN 0969-0239, E-ISSN 1572-882X, Vol. 25, no 8, p. 4375-4388Article in journal (Refereed)
    Abstract [en]

    The partial hydrophobization of hydroxyl ethyl cellulose (HEC), by incorporating benzyl entities, was successfully performed. So, cavities with binding sites enable to encapsulate the copper ion (Cu(II)) by coordination interaction result from. The resulting product (BEC, DS ae 1) thus contained two types of chelating sites: 2,2'-oxydiethanol and 2,2'-(ethane-1,2-diylbis (oxy))diethanol. The complex formed upon reaction with Cu(II) (labeled CuBEC) was studied using UV-Vis spectroscopy, and the results indicate strong ligand-metal charge transfer transitions of O -> Cu. The chemical structures of HEC, BEC and CuBEC were characterized by FTIR and NMR (H-1, H-1 DOSY, C-13 DEPT-135 and C-13) and UV-Vis spectroscopy was investigated. Furthermore, the crystalline order and the thermal stability were studied based on XRD patterns and thermogravimetric analysis, respectively. The structural results indicated that the copper ion has been encapsulated in square planar geometry formed by the two oxygen atoms of free hydroxyethyl (unbenzylated), the oxygen of the osidic bond and that of the hydroxyl of C-3 of adjacent anhydroglucose unit. A theoretical study was conducted using Hartree-Fock and density functional theory computations; the experimental results were in good agreement with the Theoretical ones. [GRAPHICS]

  • 6.
    Sundman, Ola
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Adsorption of four non-ionic cellulose derivatives on cellulose model surfaces2014In: Cellulose (London), ISSN 0969-0239, E-ISSN 1572-882X, Vol. 21, no 1, p. 115-124Article in journal (Refereed)
    Abstract [en]

    The adsorption of four commercial non-ionic cellulose derivatives onto two different model surfaces of cellulose fibres has been studied with surface plasmon reflectance. The model surfaces of cellulose were ultrathin films of either nano fibrillated cellulose or regenerated cellulose on Au(s). Partial least squares models were used in the analysis of the data and it was found that the type of cellulose model surface seems to be most important for both the total adsorption and the initial adsorption rate of the studied cellulose derivatives. It is believed that this can be explained by morphological differences between the surfaces, and it was found that the properties of the cellulose derivatives that affect the adsorption of the two types of cellulose surface differ. For adsorption onto a NFC-based model surface, the type of cellulose derivative and the polydispersity index (PDI) of the cellulose derivative seem to be the two most important variables for the observed adsorption of these cellulose derivatives. For the regenerated cellulose surface the three most important variables are the M (n) of the cellulose derivatives, the DS (NMR) of the methyl celluloses, and PDI of the cellulose derivatives. Thus the adsorption of cellulose derivatives on the NFC-based cellulose model surface is strongly affected by the type of substituent, while the same cannot be said for a surface regenerated from N-methylmorpholine-N-oxide. Additionally, the DS (NMR) of methyl celluloses affects their adsorption differently on the investigated cellulose model surfaces.

  • 7. Svenningsson, Leo
    et al.
    Sparrman, Tobias
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Bialik, Erik
    Bernin, Diana
    Nordstierna, Lars
    Molecular orientation distribution of regenerated cellulose fibers investigated with rotor synchronized solid state NMR spectroscopy2019In: Cellulose (London), ISSN 0969-0239, E-ISSN 1572-882X, Vol. 26, no 8, p. 4681-4692Article in journal (Refereed)
    Abstract [en]

    A regenerated cellulose fiber is, in contrast to cotton, a man-made fiber. In the fiber production, the cellulose polymer is subject to various processing steps, affecting the underlying molecular orientation distribution, which is a determining factor for mechanical properties of the fiber. In this work, the molecular orientation distribution was determined in a C-13 natural abundance Lyocell regenerated cellulose fiber bundle using rotor synchronized magic angle spinning NMR spectroscopy (ROSMAS) to investigate the chemical shift anisotropy (CSA). The recorded signal intensities were compared with an analytical model of the experiment to find the order parameters reflecting the orientation of the fiber. The CSA tensor was calculated using density functional theory for the crystalline cellulose II structure, commonly found in regenerated cellulose, and is required as an input parameter. The expected order parameter values were only found when approximating the glycosidic bond and its CSA tensor as being parallel to the molecular frame with the order parameter P2=0.45 +/- 0.02 compared to P2=0.46 +/- 0.02 obtained with wide angle X-ray scattering on a fiber bundle. To make this method accessible to the community, we distribute the Matlab script for the simulation of spectra obtained by the ROSMAS experiment at github.com/LeoSvenningsson/ROSMAS.

1 - 7 of 7
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf