umu.sePublikationer
Ändra sökning
Avgränsa sökresultatet
1 - 13 av 13
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1.
    Bjur, Dennis
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för integrativ medicinsk biologi (IMB). Umeå universitet, Medicinska fakulteten, Institutionen för integrativ medicinsk biologi (IMB), Anatomi. Umeå universitet, Medicinska fakulteten, Institutionen för kirurgisk och perioperativ vetenskap, Idrottsmedicin.
    Alfredson, Håkan
    Umeå universitet, Medicinska fakulteten, Institutionen för kirurgisk och perioperativ vetenskap, Idrottsmedicin.
    Forsgren, Sture
    Umeå universitet, Medicinska fakulteten, Institutionen för integrativ medicinsk biologi (IMB), Anatomi.
    The innervation pattern of the human Achilles tendon: studies of the normal and tendinosis tendon with markers for general and sensory innervation2005Ingår i: Cell and Tissue Research, ISSN 0302-766X, E-ISSN 1432-0878, Vol. 320, nr 1, s. 201-206Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Pain-free normal Achilles tendons and chronic painful Achilles tendons were examined by the use of antibodies against a general nerve marker (protein gene-product 9.5, PGP9.5), sensory markers (substance P, SP; calcitonin gene-related peptide, CGRP), and immunohistochemistry. In the normal tendons, immunoreactions against PGP9.5 and against SP/CGRP were encountered in the paratendinous loose connective tissue, being confined to nerve fascicles and to nerve fibers located in the vicinity of blood vessels. To some extent, these immunoreactions also occurred in the tendon tissue proper. Immunoreaction against PGP9.5 and against SP/CGRP was also observed in the tendinosis samples and included immunoreactive nerve fibers that were intimately associated with small blood vessels. In conclusion, Mechanoreceptors (sensory corpuscles) were occasionally observed, nerve-related components are present in association with blood vessels in both the normal and the tendinosis tendon.

  • 2.
    Bjur, Dennis
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för kirurgisk och perioperativ vetenskap, Idrottsmedicin. Umeå universitet, Medicinska fakulteten, Institutionen för integrativ medicinsk biologi (IMB), Anatomi.
    Danielson, Patrik
    Umeå universitet, Medicinska fakulteten, Institutionen för integrativ medicinsk biologi (IMB).
    Alfredson, Håkan
    Umeå universitet, Medicinska fakulteten, Institutionen för kirurgisk och perioperativ vetenskap, Idrottsmedicin.
    Forsgren, Sture
    Umeå universitet, Medicinska fakulteten, Institutionen för integrativ medicinsk biologi (IMB).
    Presence of a non-neuronal cholinergic system and occurrence of up- and down-regulation in expression of M2 muscarinic acetylcholine receptors: new aspects of importance regarding Achilles tendon tendinosis (tendinopathy)2008Ingår i: Cell and Tissue Research, ISSN 0302-766X, E-ISSN 1432-0878, Vol. 331, nr 2, s. 385-400Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Limited information is available concerning the existence of a cholinergic system in the human Achilles tendon. We have studied pain-free normal Achilles tendons and chronically painful Achilles tendinosis tendons with regard to immunohistochemical expression patterns of the M(2) muscarinic acetylcholine receptor (M(2)R), choline acetyltransferase (ChAT), and vesicular acetylcholine transporter (VAChT). M(2)R immunoreactivity was detected in the walls of blood vessels. As evidenced via parallel staining for CD31 and alpha-smooth muscle actin, most M(2)R immunoreactivity was present in the endothelium. M(2)R immunoreactivity also occured in tenocytes, which regularly immunoreact for vimentin. The degree of M(2)R immunoreactivity was highly variable, tendinosis tendons that exhibit hypercellularity and hypervascularity showing the highest levels of immunostaining. Immunoreaction for ChAT and VAChT was detected in tenocytes in tendinosis specimens, particularly in aberrant cells. In situ hybridization revealed that mRNA for ChAT is present in tenocytes in tendinosis specimens. Our results suggest that autocrine/paracrine effects occur concerning the tenocytes in tendinosis. Up-regulation/down-regulation in the levels of M(2)R immunoreactivity possibly take place in tenocytes and blood vessel cells during the various stages of tendinosis. The presumed local production of acetylcholine (ACh), as evidenced by immunoreactivity for ChAT and VAChT and the detection of ChAT mRNA, appears to evolve in response to tendinosis. These observations are of importance because of the well-known vasoactive, trophic, and pain-modulating effects that ACh is known to have and do unexpectedly establish the presence of a non-neuronal cholinergic system in the Achilles tendon.

  • 3.
    Fong, Gloria
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för integrativ medicinsk biologi (IMB), Anatomi.
    Backman, Ludvig
    Umeå universitet, Medicinska fakulteten, Institutionen för integrativ medicinsk biologi (IMB), Anatomi. Umeå universitet, Medicinska fakulteten, Institutionen för kirurgisk och perioperativ vetenskap.
    Andersson, Gustav
    Umeå universitet, Medicinska fakulteten, Institutionen för integrativ medicinsk biologi (IMB), Anatomi.
    Scott, Alexander
    Vancouver Coastal Health and Research Institute.
    Danielson, Patrik
    Umeå universitet, Medicinska fakulteten, Institutionen för integrativ medicinsk biologi (IMB), Anatomi.
    Human tenocytes are stimulated to proliferate by acetylcholine through an EGFR signalling pathway2013Ingår i: Cell and Tissue Research, ISSN 0302-766X, E-ISSN 1432-0878, Vol. 351, nr 3, s. 465-475Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Studies of human patellar and Achilles tendons have shown that primary tendon fibroblasts (tenocytes) not only have the capacity to produce acetylcholine (ACh) but also express muscarinic ACh receptors (mAChRs) through which ACh can exert its effects. In patients with tendinopathy (chronic tendon pain) with tendinosis, the tendon tissue is characterised by hypercellularity and angiogenesis, both of which might be influenced by ACh. In this study, we have tested the hypothesis that ACh increases the proliferation rate of tenocytes through mAChR stimulation and have examined whether this mechanism operates via the extracellular activation of the epidermal growth factor receptor (EGFR), as shown in other fibroblastic cells. By use of primary human tendon cell cultures, we identified cells expressing vimentin, tenomodulin and scleraxis and found that these cells also contained enzymes related to ACh synthesis and release (choline acetyltransferase and vesicular acetylcholine transporter). The cells furthermore expressed mAChRs of several subtypes. Exogenously administered ACh stimulated proliferation and increased the viability of tenocytes in vitro. When the cells were exposed to atropine (an mAChR antagonist) or the EGFR inhibitor AG1478, the proliferative effect of ACh decreased. Western blot revealed increased phosphorylation, after ACh stimulation, for both EGFR and the extracellular-signal-regulated kinases 1 and 2. Given that tenocytes have been shown to produce ACh and express mAChRs, this study provides evidence of a possible autocrine loop that might contribute to the hypercellularity seen in tendinosis tendon tissue.

  • 4.
    Hellman, Urban
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för folkhälsa och klinisk medicin, Medicin. Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk biovetenskap, Medicinsk och klinisk genetik.
    Hellström, Martin
    Umeå universitet, Medicinska fakulteten, Institutionen för folkhälsa och klinisk medicin, Medicin.
    Mörner, Stellan
    Umeå universitet, Medicinska fakulteten, Institutionen för folkhälsa och klinisk medicin, Medicin.
    Engström Laurent, Anna
    Umeå universitet, Medicinska fakulteten, Institutionen för folkhälsa och klinisk medicin, Medicin.
    Aberg, Anna-Maja
    Umeå universitet, Medicinska fakulteten, Institutionen för folkhälsa och klinisk medicin, Medicin. Umeå universitet, Medicinska fakulteten, Institutionen för kirurgisk och perioperativ vetenskap, Anestesiologi och intensivvård.
    Oliviero, Patricia
    Samuel, Jane-Lise
    Waldenström, Anders
    Umeå universitet, Medicinska fakulteten, Institutionen för folkhälsa och klinisk medicin, Medicin.
    Parallel up-regulation of FGF-2 and hyaluronan during development of cardiac hypertrophy in rat2008Ingår i: Cell and Tissue Research, ISSN 0302-766X, E-ISSN 1432-0878, Vol. 332, nr 1, s. 49-56Artikel i tidskrift (Refereegranskat)
  • 5.
    Kalbermatten, Daniel F
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för integrativ medicinsk biologi (IMB), Anatomi.
    Schaakxs, Dominique
    Umeå universitet, Medicinska fakulteten, Institutionen för integrativ medicinsk biologi (IMB), Anatomi.
    Kingham, Paul J
    Umeå universitet, Medicinska fakulteten, Institutionen för integrativ medicinsk biologi (IMB), Anatomi.
    Wiberg, Mikael
    Umeå universitet, Medicinska fakulteten, Institutionen för integrativ medicinsk biologi (IMB), Anatomi. Umeå universitet, Medicinska fakulteten, Institutionen för kirurgisk och perioperativ vetenskap, Handkirurgi.
    Neurotrophic activity of human adipose stem cells isolated from deep and superficial layers of abdominal fat2011Ingår i: Cell and Tissue Research, ISSN 0302-766X, E-ISSN 1432-0878, Vol. 344, nr 2, s. 251-260Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    New approaches to the clinical treatment of traumatic nerve injuries may one day utilize stem cells to enhance nerve regeneration. Adipose-derived stem cells (ASC) are found in abundant quantities and can be harvested by minimally invasive procedures that should facilitate their use in such regenerative applications. We have analyzed the properties of human ASC isolated from the deep and superficial layers of abdominal fat tissue obtained during abdominoplasty procedures. Cells from the superficial layer proliferate significantly faster than those from the deep layer. In both the deep and superficial layers, ASC express the pluripotent stem cell markers oct4 and nanog and also the stro-1 cell surface antigen. Superficial layer ASC induce the significantly enhanced outgrowth of neurite-like processes from neuronal cell lines when compared with that of deep layer cells. However, analysis by reverse transcription with the polymerase chain reaction and by enzyme-linked immunosorbent assay has revealed that ASC isolated from both layers express similar levels of the following neurotrophic factors: nerve growth factor, brain-derived neurotrophic factor and glial-derived neurotrophic factor. Thus, human ASC show promising potential for the treatment of traumatic nerve injuries. In particular, superficial layer ASC warrant further analysis of their neurotrophic molecules.

  • 6.
    Mu, Yabing
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk biovetenskap.
    Gudey, Shyam Kumar
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk biovetenskap.
    Landström, Marene
    Umeå universitet, Medicinska fakulteten, Institutionen för medicinsk biovetenskap.
    Non-Smad signaling pathways2012Ingår i: Cell and Tissue Research, ISSN 0302-766X, E-ISSN 1432-0878, Vol. 347, nr 1, s. 11-20Artikel, forskningsöversikt (Refereegranskat)
    Abstract [en]

    Transforming growth factor-beta (TGF beta) is a key regulator of cell fate during embryogenesis and has also emerged as a potent driver of the epithelial-mesenchymal transition during tumor progression. TGF beta signals are transduced by transmembrane type I and type II serine/threonine kinase receptors (T beta RI and T beta RII, respectively). The activated T beta R complex phosphorylates Smad2 and Smad3, converting them into transcriptional regulators that complex with Smad4. TGF beta also uses non-Smad signaling pathways such as the p38 and Jun N-terminal kinase (JNK) mitogen-activated protein kinase (MAPK) pathways to convey its signals. Ubiquitin ligase tumor necrosis factor (TNF)-receptor-associated factor 6 (TRAF6) and TGF beta-associated kinase 1 (TAK1) have recently been shown to be crucial for the activation of the p38 and JNK MAPK pathways. Other TGF beta-induced non-Smad signaling pathways include the phosphoinositide 3-kinase-Akt-mTOR pathway, the small GTPases Rho, Rac, and Cdc42, and the Ras-Erk-MAPK pathway. Signals induced by TGF beta are tightly regulated and specified by post-translational modifications of the signaling components, since they dictate the subcellular localization, activity, and duration of the signal. In this review, we discuss recent findings in the field of TGF beta-induced responses by non-Smad signaling pathways.

  • 7.
    Nilsson, Jonas
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för strålningsvetenskaper, Onkologi.
    Starefeldt, Anna
    Umeå universitet, Medicinska fakulteten, Institutionen för strålningsvetenskaper, Onkologi.
    Henriksson, Roger
    Umeå universitet, Medicinska fakulteten, Institutionen för strålningsvetenskaper, Onkologi.
    Hedman, Håkan
    Umeå universitet, Medicinska fakulteten, Institutionen för strålningsvetenskaper, Onkologi.
    LRIG1 protein in human cells and tissues2003Ingår i: Cell and Tissue Research, ISSN 0302-766X, E-ISSN 1432-0878, Vol. 312, nr 1, s. 65-71Artikel i tidskrift (Refereegranskat)
  • 8.
    Prittinen, Juha
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för integrativ medicinsk biologi (IMB).
    Ylärinne, Janne
    Umeå universitet, Medicinska fakulteten, Institutionen för integrativ medicinsk biologi (IMB).
    Piltti, Juha
    Umeå universitet, Medicinska fakulteten, Institutionen för integrativ medicinsk biologi (IMB). Nordlab Kokkola, Keski-Pohjanmaa Central Hospital Soite, Kokkola, Finland.
    Karhula, Sakari S.
    Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland; Infotech Doctoral Program, University of Oulu, Oulu, Finland.
    Rieppo, Lassi
    Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland; Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland.
    Ojanen, S. P.
    Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland; Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.
    Korhonen, Rami K.
    Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.
    Saarakkala, S.
    Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland; Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland; Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland.
    Lammi, Mikko
    Umeå universitet, Medicinska fakulteten, Institutionen för integrativ medicinsk biologi (IMB). School of Public Health, Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an Jiaotong University, Xi'an, China.
    Qu, Chengjuan
    Umeå universitet, Medicinska fakulteten, Institutionen för integrativ medicinsk biologi (IMB).
    Effect of centrifugal force on the development of articular neocartilage with bovine primary chondrocytes2019Ingår i: Cell and Tissue Research, ISSN 0302-766X, E-ISSN 1432-0878, Vol. 375, nr 3, s. 629-639Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    A lot has been invested into understanding how to assemble cartilage tissue in vitro and various designs have been developed to manufacture cartilage tissue with native-like biological properties. So far, no satisfactory design has been presented. Bovine primary chondrocytes are used to self-assemble scaffold-free constructs to investigate whether mechanical loading by centrifugal force would be useful in manufacturing cartilage tissue in vitro. Six million chondrocytes were laid on top of defatted bone disks placed inside an agarose well in 50-ml culture tubes. The constructs were centrifuged once or three times per day for 15 min at a centrifugal force of 771×g for up to 4 weeks. Control samples were cultured under the same conditions without exposure to centrifugation. The samples were analysed by (immuno)histochemistry, Fourier transform infrared imaging, micro-computed tomography, biochemical and gene expression analyses. Biomechanical testing was also performed. The centrifuged tissues had a more even surface covering a larger area of the bone disk. Fourier transform infrared imaging analysis indicated a higher concentration of collagen in the top and bottom edges in some of the centrifuged samples. Glycosaminoglycan contents increased along the culture, while collagen content remained at a rather constant level. Aggrecan and procollagen α1(II) gene expression levels had no significant differences, while procollagen α2(I) levels were increased significantly. Biomechanical analyses did not reveal remarkable changes. The centrifugation regimes lead to more uniform tissue constructs, whereas improved biological properties of the native tissue could not be obtained by centrifugation.

  • 9.
    Qu, Chengjuan
    et al.
    Umeå universitet, Medicinska fakulteten, Institutionen för integrativ medicinsk biologi (IMB).
    Brohlin, Maria
    Umeå universitet, Medicinska fakulteten, Institutionen för klinisk mikrobiologi. Division of Clinical Immunology and Transfusion Medicine, Tissue Establishment, Cell Therapy Unit, Department of Laboratory Medicine, Umeå University Hospital, Umeå, Sweden.
    Kingham, Paul J.
    Umeå universitet, Medicinska fakulteten, Institutionen för integrativ medicinsk biologi (IMB).
    Kelk, Peyman
    Umeå universitet, Medicinska fakulteten, Institutionen för integrativ medicinsk biologi (IMB).
    Evaluation of growth, stemness, and angiogenic properties of dental pulp stem cells cultured in cGMP xeno-/serum-free medium2019Ingår i: Cell and Tissue Research, ISSN 0302-766X, E-ISSN 1432-0878Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    This study was aimed to investigate the effects of cGMP xeno-/serum-free medium (XSF, Irvine Scientific) on the properties of human dental pulp stem cells (DPSCs). DPSCs, from passage 2, were cultured in XSF or fetal bovine serum (FBS)-supplemented medium, and sub-cultured up to passage 8. Cumulative population doublings (PDs) and the number of colony-forming-units (CFUs) were determined. qRT-PCR, ELISA, and in vitro assays were used to assess angiogenic capacity. Flow cytometry was used to measure CD73, CD90, and CD105 expression. Differentiation into osteo-, adipo-, and chondrogenic cell lineages was performed. DPSCs showed more elongated morphology, a reduced rate of proliferation at later passages, and lower CFU counts in XSF compared with FBS. Expression of angiogenic factors at the gene and protein levels varied in the two media and with passage number, but cells grown in XSF had more in vitro angiogenic activity. The majority of early and late passage DPSCs cultured in XSF expressed CD73 and CD90. In contrast, the percentage of CD105 positive DPSCs in XSF medium was significantly lower with increased passage whereas the majority of cells cultured in FBS were CD105 positive. Switching XSF-cultured DPSCs to medium supplemented with human serum restored the expression of CD105. The tri-lineage differentiation of DPSCs cultured under XSF and FBS conditions was similar. We showed that despite reduced CD105 expression levels, DPSCs expanded in XSF medium maintained a functional MSC phenotype. Furthermore, restoration of CD105 expression is likely to occur upon in vivo transplantation, when cells are exposed to human serum.

  • 10.
    Qu, Chengjuan
    et al.
    Department of Biosciences, Biocenter Kuopio, University of Eastern Finland, Kuopio, Finland.
    Lindeberg, Heli
    Department of Biosciences, University of Eastern Finland, Kuopio, Finland.
    Ylärinne, Janne
    Department of Biosciences, University of Eastern Finland, Kuopio, Finland.
    Lammi, Mikko
    Department of Biosciences, Biocenter Kuopio, University of Eastern Finland, Kuopio, Finland.
    Five percent oxygen tension is not beneficial for neocartilage formation in scaffold-free cell cultures2012Ingår i: Cell and Tissue Research, ISSN 0302-766X, E-ISSN 1432-0878, Vol. 348, nr 1, s. 109-117, artikel-id 22392735Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We have investigated whether 5% oxygen tension (O(2)) is beneficial for neocartilage formation when chondrocytes are cultured in transwell-COL inserts. Six million bovine primary chondrocytes were cultured in an insert with DMEM supplemented with 10% fetal bovine serum and antibiotics, with or without glucosamine sulphate (GS) in a 5% or 20% O(2) environment for 2, 4, or 6 weeks. The samples were collected for the histological staining of proteoglycans (PGs) and type II collagen, quantitative reverse transcription with the polymerase chain reaction (RT-PCR) analyses of the mRNA expression of aggrecan and procollagen α(1)(II), procollagen α(2)(I) and hyaluronan synthase 2, quantitation of PGs, and agarose gel electrophoresis. Neocartilage produced at 20% O(2) appeared larger than that at 5% O(2). Histological staining showed that more PGs and type II collagen and better native cartilage structure were produced at 20% than at 5% O(2). The thickness of neocartilage increased during the culture period. Quantitative RT-PCR showed that the procollagen α(1)(II) mRNA expression level was significantly higher at 20% than at 5% O(2). However, no significant difference in gene expression and PG content was found between control and GS-treated cultures at either 20% or 5% O(2). Thus, in contrast to monolayer cultures, engineered cartilage from scaffold-free cultured chondrocytes at 20% O(2) produced better extracellular matrix (ECM) than that at 5% O(2). PGs were mainly large. Exogenous GS was not beneficial for the ECM in scaffold-free chondrocyte cultures.

  • 11.
    Qu, Cheng-Juan
    et al.
    Department of Biomedicine, Anatomy, University of Kuopio, Kuopio, Finland; Department of Biosciences, Applied Biotechnology, University of Kuopio, Kuopio, Finland.
    Pöytäkangas, Teemu
    Department of Biomedicine, Anatomy, University of Kuopio, Kuopio, Finland.
    Jauhiainen, Marjo
    Department of Pharmaceutical Chemistry, University of Kuopio, Kuopio, Finland.
    Auriola, Seppo
    Department of Pharmaceutical Chemistry, University of Kuopio, Kuopio, Finland.
    Lammi, Mikko
    Department of Biosciences, Applied Biotechnology, University of Kuopio, Kuopio, Finland.
    Glucosamine sulphate does not increase extracellular matrix production at low oxygen tension.2009Ingår i: Cell and Tissue Research, ISSN 0302-766X, E-ISSN 1432-0878, Vol. 337, nr 1, s. 103-111, artikel-id 19440735Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Low oxygen tension may change the dependence of chondrocytes on exogenous carbohydrate sources. In this study, we have investigated whether glucosamine sulphate (GS) stimulates proteoglycan synthesis, the mRNA expression of aggrecan and of type II collagen, and UDP-sugar levels in bovine primary chondrocytes under a low oxygen (O(2)) atmosphere. Chondrocytes from bovine femoral condyles were cultivated with or without GS or sulphate at various concentrations in low- (5.5 mM) or high-glucose (25 mM) DMEM under either a 5% or 20% O(2) atmosphere for 2 or 8 days after isolation. The mRNA expression of aggrecan and type II collagen and the synthesis of glycosaminoglycan (GAG) were determined by quantitative real-time reverse transcription with polymerase chain reaction and a [(35)S]-sulphate incorporation assay, respectively. Aggrecan promoter activity was analysed by a dual-luciferase reporter gene assay. Intracellular UDP-N-acetylhexosamines (UDP-HexN), UDP-glucuronic acid and UDP-hexoses were analysed by reversed-phase high-performance liquid chromatography electrospray ionization mass spectrometry. A low (5%) O(2) atmosphere significantly increased GAG synthesis, mRNA expression of aggrecan and of type II collagen and aggrecan promoter activity in bovine primary chondrocytes. A high (1 mM) concentration of GS was required to increase the level of UDP-HexN. However, GS did not increase GAG synthesis, aggrecan promoter activity or mRNA expression of aggrecan and of type II collagen. Interestingly, a 5% O(2) atmosphere increased the level of UDP-HexN in 8-day cultures without GS treatment. Thus, exogenous GS does not change chondrocyte metabolism, whereas a 5% O(2) atmosphere stimulates extracellular matrix production in bovine primary chondrocytes. The balance of UDP-sugars is changed under a 5% O(2) atmosphere for longer culture periods.

  • 12. Tahkola, Jenni
    et al.
    Räsänen, Juha
    Sund, Malin
    Mäkikallio, Kaarin
    Autio-Harmainen, Helena
    Pihlajaniemi, Taina
    Cardiac dysfunction in transgenic mouse fetuses overexpressing shortened type XIII collagen2008Ingår i: Cell and Tissue Research, ISSN 0302-766X, E-ISSN 1432-0878, Vol. 333, nr 1, s. 61-69Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Overexpression of type XIII collagen molecules with an 83-amino-acid residue in-frame deletion of part of the ectodomain leads to fetal lethality in Col13a1COL2del transgenic mice. We characterize here the functional disturbances in the cardiovascular system of mouse fetuses overexpressing mutant type XIII collagen. Doppler ultrasonography was performed at 12.5 days of gestation on 33 fetuses resulting from heterozygous matings of seven female mice and on 16 fetuses from two matings between heterozygous and wild-type mice. Nine fetuses had atrioventricular valve regurgitation (AVVR), and all of them were transgene-positive. The fetuses with AVVR had a lower outflow mean velocity (Vmean; P<0.005) and a greater proportion of isovolumetric relaxation time (IRT%) in the cardiac cycle (P<0.0001) than those without AVVR, and their ductus venosus pulsatility indices for veins (DV PIV) and the umbilical artery pulsatility indices were increased. A positive correlation was found between IRT% and DV PIV, and a negative correlation was seen between outflow V(mean) and DV PIV. Morphological analysis of the heart revealed no differences between the two groups of fetuses, but histological analysis showed the trabeculation of the ventricles to be reduced and the myocardium to be thinner in the fetuses with AVVR. Based on in situ hybridization, type XIII collagen mRNAs were normal constituents of these structures. Moreover, a positive correlation was found between outflow Vmean and myocardial thickness. IRT% and DV PIV correlated negatively with myocardial thickness. Thus, overexpression of mutant type XIII collagen results in mid-gestation cardiac dysfunction in mouse fetuses, and these disturbances in cardiac function may lead to death in utero.

  • 13.
    Ylärinne, Janne
    et al.
    Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.
    Qu, Chengjuan
    Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.
    Lammi, Mikko
    Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.
    Hypertonic conditions enhance cartilage formation in scaffold-free primary chondrocyte cultures2014Ingår i: Cell and Tissue Research, ISSN 0302-766X, E-ISSN 1432-0878, ISSN 1432-0878, Vol. 358, nr 2, s. 541-550Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The potential of hypertonic conditions at in vivo levels to promote cartilage extracellular matrix accumulation in scaffold-free primary chondrocyte cultures was investigated. Six million bovine primary chondrocytes were cultured in transwell inserts in low glucose (LG), high glucose (HG), or hypertonic high glucose (HHG) DMEM supplemented with fetal bovine serum, antibiotics, and ascorbate under 5 % or 20 % O2 tension with and without transforming growth factor (TGF)-β3 for 6 weeks. Samples were collected for histological staining of proteoglycans (PGs) and type II collagen, analysis by quantitative reverse transcription plus the polymerase chain reaction (RT-PCR) of mRNA expression of aggrecan and procollagen α1 (II) and of Sox9 and procollagen α2 (I), and quantitation of PGs and PG separation in agarose gels. Cartilage tissues produced at 20 % O2 tension were larger than those formed at 5 % O2 tension. Compared with LG, the tissues grew to larger sizes in HG or HHG medium. Histological staining showed the strongest PG and type II collagen staining in cartilage generated in HG or HHG medium at 20 % O2 tension. Quantitative RT-PCR results indicated significantly higher expression of procollagen α1 (II) mRNA in cartilage generated in HHG medium at 20 % O2 tension compared with that in the other samples. TGF-β3 supplements in the culture medium provided no advantage for cartilage formation. Thus, HHG medium used at 20 % O2 tension is the most beneficial combination of the tested culture conditions for scaffold-free cartilage production in vitro and should improve cell culture for research into cartilage repair or tissue engineering.

1 - 13 av 13
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf