umu.sePublications
Change search
Refine search result
1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Fei, Xiaowen
    et al.
    Eriksson, Mats
    Umeå University, Faculty of Science and Technology, Department of Plant Physiology. Umeå University, Faculty of Science and Technology, Umeå Plant Science Centre (UPSC).
    Li, Yajun
    Deng, Xiaodong
    A novel negative Fe-deficiency-responsive element and a TGGCA-type-like FeRE control the expression of FTR1 in Chlamydomonas reinhardtii.2010In: Journal of Biomedicine and Biotechnology, ISSN 1110-7243, E-ISSN 1110-7251, Vol. 2010, p. 790247-Article in journal (Refereed)
    Abstract [en]

    We have reported three Fe-deficiency-responsive elements (FEREs), FOX1, ATX1, and FEA1, all of which are positive regulatory elements in response to iron deficiency in Chlamydomonas reinhardtii. Here we describe FTR1, another iron regulated gene and mutational analysis of its promoter. Our results reveal that the FeREs of FTR1 distinguish itself from other iron response elements by containing both negative and positive regulatory regions. In FTR1, the -291/-236 region from the transcriptional start site is necessary and sufficient for Fe-deficiency-inducible expression. This region contains two positive FeREs with a TGGCA-like core sequence: the FtrFeRE1 (ATGCAGGCT) at -287/-279 and the FtrFeRE2 (AAGCGATTGCCAGAGCGC) at -253/-236. Furthermore, we identified a novel FERE, FtrFeRE3 (AGTAACTGTTAAGCC) localized at -319/-292, which negatively influences the expression of FTR1.

  • 2.
    Flodgren, Gerd M
    et al.
    Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Sports Medicine.
    Crenshaw, Albert G
    Hellström, Fredrik
    Fahlström, Martin
    Umeå University, Faculty of Medicine, Department of Surgical and Perioperative Sciences, Sports Medicine. Umeå University, Faculty of Medicine, Department of Community Medicine and Rehabilitation, Rehabilitation Medicine.
    Combining microdialysis and near-infrared spectroscopy for studying effects of low-load repetitive work on the intramuscular chemistry in trapezius myalgia.2010In: Journal of Biomedicine and Biotechnology, ISSN 1110-7243, E-ISSN 1110-7251, Vol. 2010, p. 513803-Article in journal (Refereed)
    Abstract [en]

    Epidemiological research provides strong evidence for a link between repetitive work (RW) and the development of chronic trapezius myalgia (TM). The aims were to further elucidate if an accumulation of sensitising substances or impaired oxygenation is evident in painful muscles during RW. Females with TM (n = 14) were studied during rest, 30 minutes RW and 60 minutes recovery. Microdialysate samples were obtained to determine changes in intramuscular microdialysate (IMMD) [glutamate], [PGE(2)], [lactate], and [pyruvate] (i.e., [concentration]) relative to work. Muscle oxygenation (%StO(2)) was assessed using near-infrared spectroscopy. During work, all investigated substances, except PGE(2), increased significantly: [glutamate] (54%, P < .0001), [lactate] (26%, P < .005), [pyruvate] (19%, P < .0001), while the %StO(2) decreased (P < .05). During recovery [PGE(2)] decreased (P < .005), [lactate] remained increased (P < .001), [pyruvate] increased progressively (P < .0001), and %StO(2) had returned to baseline. Changes in substance concentrations and oxygenation in response to work indicate normal increase in metabolism but no ongoing inflammation in subjects with TM.

1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf