umu.sePublications
Change search
Refine search result
1 - 7 of 7
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Billker, Oliver
    Umeå University, Faculty of Medicine, Department of Molecular Biology (Faculty of Medicine). Umeå University, Faculty of Medicine, Molecular Infection Medicine Sweden (MIMS). Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology).
    CRISPRing the elephant in the room2018In: Cell Host and Microbe, ISSN 1931-3128, E-ISSN 1934-6069, Vol. 24, no 6, p. 754-755Article in journal (Other academic)
    Abstract [en]

    The importance of guanylyl-cyclases (GCs) in apicomplexa has remained elusive due to the large size of the genes. Two recent studies, including Brown and Sibley, 2018 in this issue of Cell Host & Microbe, make elegant use of genome editing with CRISPR-Cas9 to characterize roles of GCs in Toxoplasma and Plasmodium.

  • 2.
    Bugaytsova, Jeanna A.
    et al.
    Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics.
    Björnham, Oscar
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics. Swedish Defence Research Agency, 906 21 Umeå, Sweden.
    Chernov, Yevgen A.
    Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics.
    Gideonsson, Pär
    Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics.
    Henriksson, Sara
    Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics.
    Mendez, Melissa
    Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics.
    Sjöström, Rolf
    Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics.
    Mahdavi, Jafar
    Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics. School of Life Sciences, CBS, University of Nottingham, NG7 2RD Nottingham, UK.
    Shevtsova, Anna
    Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics.
    Ilver, Dag
    Moonens, Kristof
    Quintana-Hayashi, Macarena P.
    Moskalenko, Roman
    Aisenbrey, Christopher
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Bylund, Göran
    Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics.
    Schmidt, Alexej
    Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics. Umeå University, Faculty of Medicine, Department of Medical Biosciences.
    Åberg, Anna
    Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics.
    Brännström, Kristoffer
    Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics.
    Koeniger, Verena
    Vikström, Susanne
    Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics.
    Rakhimova, Lena
    Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics. Umeå University, Faculty of Medicine, Department of Medical Biosciences.
    Hofer, Anders
    Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics.
    Ögren, Johan
    Umeå University, Faculty of Medicine, Department of Public Health and Clinical Medicine, Section of Medicine.
    Liu, Hui
    Goldman, Matthew D.
    Whitmire, Jeannette M.
    Åden, Jörgen
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Younson, Justine
    Kelly, Charles G.
    Gilman, Robert H.
    Chowdhury, Abhijit
    Mukhopadhyay, Asish K.
    Nair, G. Balakrish
    Papadakos, Konstantinos S.
    Martinez-Gonzalez, Beatriz
    Sgouras, Dionyssios N.
    Engstrand, Lars
    Unemo, Magnus
    Danielsson, Dan
    Suerbaum, Sebastian
    Oscarson, Stefan
    Morozova-Roche, Ludmilla A.
    Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics.
    Olofsson, Anders
    Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics.
    Gröbner, Gerhard
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Holgersson, Jan
    Esberg, Anders
    Umeå University, Faculty of Medicine, Department of Odontology.
    Strömberg, Nicklas
    Umeå University, Faculty of Medicine, Department of Odontology.
    Landström, Maréne
    Umeå University, Faculty of Medicine, Department of Medical Biosciences.
    Eldridge, Angela M.
    Chromy, Brett A.
    Hansen, Lori M.
    Solnick, Jay V.
    Linden, Sara K.
    Haas, Rainer
    Dubois, Andre
    Merrell, D. Scott
    Schedin, Staffan
    Umeå University, Faculty of Science and Technology, Department of Applied Physics and Electronics.
    Remaut, Han
    Arnqvist, Anna
    Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics.
    Berg, Douglas E.
    Boren, Thomas
    Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics.
    Helicobacter pylori Adapts to Chronic Infection and Gastric Disease via pH-Responsive BabA-Mediated Adherence2017In: Cell Host and Microbe, ISSN 1931-3128, E-ISSN 1934-6069, Vol. 21, no 3, p. 376-389Article in journal (Refereed)
    Abstract [en]

    The BabA adhesin mediates high-affinity binding of Helicobacter pylori to the ABO blood group antigen-glycosylated gastric mucosa. Here we show that BabA is acid responsive-binding is reduced at low pH and restored by acid neutralization. Acid responsiveness differs among strains; often correlates with different intragastric regions and evolves during chronic infection and disease progression; and depends on pH sensor sequences in BabA and on pH reversible formation of high-affinity binding BabA multimers. We propose that BabA's extraordinary reversible acid responsiveness enables tight mucosal bacterial adherence while also allowing an effective escape from epithelial cells and mucus that are shed into the acidic bactericidal lumen and that bio-selection and changes in BabA binding properties through mutation and recombination with babA-related genes are selected by differences among individuals and by changes in gastric acidity over time. These processes generate diverse H. pylori subpopulations, in which BabA's adaptive evolution contributes to H. pylori persistence and overt gastric disease.

  • 3. Jin, Jing
    et al.
    Galaz-Montoya, Jesus G.
    Sherman, Michael B.
    Sun, Stella Y.
    Goldsmith, Cynthia S.
    O'Toole, Eileen T.
    Ackerman, Larry
    Carlson, Lars-Anders
    Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics.
    Weaver, Scott C.
    Chiu, Wah
    Simmons, Graham
    Neutralizing Antibodies Inhibit Chikungunya Virus Budding at the Plasma Membrane2018In: Cell Host and Microbe, ISSN 1931-3128, E-ISSN 1934-6069, Vol. 24, no 3, p. 417-+Article in journal (Refereed)
    Abstract [en]

    Neutralizing antibodies (NAbs) are traditionally thought to inhibit virus infection by preventing virion entry into target cells. In addition, antibodies can engage Fc receptors (FcRs) on immune cells to activate antiviral responses. We describe a mechanism by which NAbs inhibit chikungunya virus (CHIKV), the most common alphavirus infecting humans, by preventing virus budding from infected human cells and activating IgG-specific Fc gamma receptors. NAbs bind to CHIKV glycoproteins on the infected cell surface and induce glycoprotein coalescence, preventing budding of nascent virions and leaving structurally heterogeneous nucleocapsids arrested in the cytosol. Furthermore, NAbs induce clustering of CHIKV replication spherules at sites of budding blockage. Functionally, these densely packed glycoprotein-NAb complexes on infected cells activate Fc gamma receptors, inducing a strong, antibody-dependent, cell-mediated cytotoxicity response from immune effector cells. Our findings describe a triply functional antiviral pathway for NAbs that might be broadly applicable across virus-host systems, suggesting avenues for therapeutic innovation through antibody design.

  • 4. Konradt, Christoph
    et al.
    Frigimelica, Elisabetta
    Nothelfer, Katharina
    Puhar, Andrea
    Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, 25–28 Rue du Dr Roux, 75724 Paris Cedex 15, France, and INSERM U786, Institut Pasteur, 25–28 Rue du Dr Roux, 75724 Paris Cedex 15, France .
    Salgado-Pabon, Wilmara
    di Bartolo, Vincenzo
    Scott-Algara, Daniel
    Rodrigues, Cristina D
    Sansonetti, Philippe J
    Phalipon, Armelle
    The Shigella flexneri type three secretion system effector IpgD inhibits T cell migration by manipulating host phosphoinositide metabolism2011In: Cell Host and Microbe, ISSN 1931-3128, E-ISSN 1934-6069, Vol. 9, no 4, p. 263-272Article in journal (Refereed)
    Abstract [en]

    Shigella, the Gram-negative enteroinvasive bacterium that causes shigellosis, relies on its type III secretion system (TTSS) and injected effectors to modulate host cell functions. However, consequences of the interaction between Shigella and lymphocytes have not been investigated. We show that Shigella invades activated human CD4(+) T lymphocytes. Invasion requires a functional TTSS and results in inhibition of chemokine-induced T cell migration, an effect mediated by the TTSS effector IpgD, a phosphoinositide 4-phosphatase. Remarkably, IpgD injection into bystander T cells can occur in the absence of cell invasion. Upon IpgD-mediated hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP(2)), the pool of PIP(2) at the plasma membrane is reduced, leading to dephosphorylation of the ERM proteins and their inability to relocalize at one T cell pole upon chemokine stimulus, likely affecting the formation of the polarized edge required for cell migration. These results reveal a bacterial TTSS effector-mediated strategy to impair T cell function.

  • 5. Meinzer, Ulrich
    et al.
    Barreau, Frederick
    Esmiol-Welterlin, Sophie
    Jung, Camille
    Villard, Claude
    Leger, Thibaut
    Ben-Mkaddem, Sanah
    Berrebi, Dominique
    Dussaillant, Monique
    Alnabhani, Ziad
    Roy, Maryline
    Bonacorsi, Stephane
    Wolf-Watz, Hans
    Umeå University, Faculty of Science and Technology, Department of Molecular Biology (Faculty of Science and Technology).
    Perroy, Julie
    Ollendorff, Vincent
    Hugot, Jean-Pierre
    Yersinia pseudotuberculosis Effector YopJ Subverts the Nod2/RICK/TAK1 Pathway and Activates Caspase-1 to Induce Intestinal Barrier Dysfunction2012In: Cell Host and Microbe, ISSN 1931-3128, E-ISSN 1934-6069, Vol. 11, no 4, p. 337-351Article in journal (Refereed)
    Abstract [en]

    Yersinia pseudotuberculosis is an enteropathogenic bacteria that disrupts the intestinal barrier and invades its host through gut-associated lymphoid tissue and Peyer's patches (PP). We show that the Y. pseudotuberculosis effector YopJ induces intestinal barrier dysfunction by subverting signaling of the innate immune receptor Nod2, a phenotype that can be reversed by pretreating with the Nod2 ligand muramyl-dipeptide. YopJ, but not the catalytically inactive mutant YopJ(C172A), acetylates critical sites in the activation loops of the RICK and TAK1 kinases, which are central mediators of Nod2 signaling, and decreases the affinity of Nod2 for RICK. Concomitantly, Nod2 interacts with and activates caspase-1, resulting in increased levels of IL-1 beta. Finally, IL-1 beta within PP plays an essential role in inducing intestinal barrier dysfunction. Thus, YopJ alters intestinal permeability and promotes the dissemination of Yersinia as well as commensal bacteria by exploiting the mucosal inflammatory response.

  • 6. Moonens, Kristof
    et al.
    Gideonsson, Pär
    Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics.
    Subedi, Suresh
    Bugaytsova, Jeanna
    Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics.
    Romao, Ema
    Mendez, Melissa
    Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics.
    Nordén, Jenny
    Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics.
    Fallah, Mahsa
    Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics.
    Rakhimova, Lena
    Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics.
    Shevtsova, Anna
    Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics.
    Lahmann, Martina
    Castaldo, Gaetano
    Brännström, Kristoffer
    Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics.
    Coppens, Fanny
    Lo, Alvin W.
    Ny, Tor
    Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics.
    Solnick, Jay V.
    Vandenbussche, Guy
    Oscarson, Stefan
    Hammarström, Lennart
    Arnqvist, Anna
    Umeå University, Faculty of Medicine, Department of Medical Biochemistry and Biophysics.
    Berg, Douglas E.
    Muyldermans, Serge
    Borén, Thomas
    Remaut, Han
    Structural Insights into Polymorphic ABO Glycan Binding by Helicobacter pylori2016In: Cell Host and Microbe, ISSN 1931-3128, E-ISSN 1934-6069, Vol. 19, no 1, p. 55-66Article in journal (Refereed)
    Abstract [en]

    The Helicobacter pylori adhesin BabA binds mucosal ABO/Le b blood group (bg) carbohydrates. BabA facilitates bacterial attachment to gastric surfaces, increasing strain virulence and forming a recognized risk factor for peptic ulcers and gastric cancer. High sequence variation causes BabA functional diversity, but the underlying structural-molecular determinants are unknown. We generated X-ray structures of representative BabA isoforms that reveal a polymorphic, three-pronged Le(b) binding site. Two diversity loops, DL1 and DL2, provide adaptive control to binding affinity, notably ABO versus O bg preference. H. pylori strains can switch bg preference with single DL1 amino acid substitutions, and can coexpress functionally divergent BabA isoforms. The anchor point for receptor binding is the embrace of an ABO fucose residue by a disulfide-clasped loop, which is inactivated by reduction. Treatment with the redox-active pharmaceutic N-acetylcysteine lowers gastric mucosal neutrophil infiltration in H. pylori-infected Le(b)-expressing mice, providing perspectives on possible H. pylori eradication therapies.

  • 7.
    Schröder, Björn
    et al.
    Wallenberg Laboratory and Sahlgrenska Center for Cardiovascular and Metabolic Research, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden.
    Birchenough, George M H
    Ståhlman, Marcus
    Arike, Liisa
    Johansson, Malin E V
    Hansson, Gunnar C
    Bäckhed, Fredrik
    Bifidobacteria or Fiber Protects against Diet-Induced Microbiota-Mediated Colonic Mucus Deterioration2018In: Cell Host and Microbe, ISSN 1931-3128, E-ISSN 1934-6069, Vol. 23, no 1, p. 27-40.e7Article in journal (Refereed)
    Abstract [en]

    Diet strongly affects gut microbiota composition, and gut bacteria can influence the colonic mucus layer, a physical barrier that separates trillions of gut bacteria from the host. However, the interplay between a Western style diet (WSD), gut microbiota composition, and the intestinal mucus layer is less clear. Here we show that mice fed a WSD have an altered colonic microbiota composition that causes increased penetrability and a reduced growth rate of the inner mucus layer. Both barrier defects can be prevented by transplanting microbiota from chow-fed mice. In addition, we found that administration of Bifidobacterium longum was sufficient to restore mucus growth, whereas administration of the fiber inulin prevented increased mucus penetrability in WSD-fed mice. We hypothesize that the presence of distinct bacteria is crucial for proper mucus function. If confirmed in humans, these findings may help to better understand diseases with an affected mucus layer, such as ulcerative colitis.

1 - 7 of 7
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf