umu.sePublications
Change search
Refine search result
1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Eriksson, Jonas
    et al.
    Department of Biotechnology, Stockholm Center for Physics, Astronomy and Biotechnology (SCFAB), Stockholm.
    Gharizadeh, Baback
    Department of Biotechnology, Stockholm Center for Physics, Astronomy and Biotechnology (SCFAB), Stockholm.
    Nordström, Tommy
    Department of Biotechnology, Stockholm Center for Physics, Astronomy and Biotechnology (SCFAB), Stockholm.
    Nyrén, Pål
    Department of Biotechnology, Stockholm Center for Physics, Astronomy and Biotechnology (SCFAB), Stockholm.
    Pyrosequencing trade mark technology at elevated temperature2004In: Electrophoresis, ISSN 0173-0835, E-ISSN 1522-2683, Vol. 25, no 1, p. 20-27Article in journal (Refereed)
    Abstract [en]

    To date, the Pyrosequencing trade mark technology has been performed at 28 degrees C due to the low thermostability of the firefly luciferase. In this study, firefly luciferase was stabilized in the presence of glycine betaine, allowing DNA sequencing at 37 degrees C. By increasing the temperature to 37 degrees C, false signals due to primer-dimers and loop-structures were decreased significantly. In addition, a combination of (i) replacing the natural dGTP with 7'deaza-dGTP in the polymerase chain reaction (PCR), (ii) 1.6 M glycine betaine, and (iii) an increase of the temperature to 37 degrees C enabled us to sequence a DNA template with the initial sequence 3'-ATGGCCCGGGGGGGAGCTCCA em leader 5'. Furthermore, we describe a method to analyze if a primer forms a primer-dimer with extendable 3'-ends.

  • 2.
    Lammi, Mikko
    et al.
    Department of Anatomy, Institute of Biomedicine, University of Kuopio, Finland.
    Häyrinen, Jukka
    Department of Medical Chemistry, Institute of Biomedicine, University of Kuopio, Kuopio, Finland.
    Mahonen, Anitta
    Department of Medical Chemistry, Institute of Biomedicine, University of Kuopio, Kuopio, Finland.
    Proteomic analysis of cartilage- and bone-associated samples.2006In: Electrophoresis, ISSN 0173-0835, E-ISSN 1522-2683, Vol. 27, no 13, p. 2687-2701, article id 16739228Article, review/survey (Refereed)
    Abstract [en]

    The skeleton of the human body is built of cartilage and bone, which are tissues that contain extensive amounts of extracellular matrix (ECM). In bone, inorganic mineral hydroxyapatite forms 50-70% of the whole weight of the tissue. Although the organic matrix of bone consists of numerous proteins, 90% of it is composed of type I collagen. In cartilage, ECM forms a major fraction of the tissue, type II collagen and aggrecans being the most abundant macromolecules. It is obvious that the high content of ECM components causes analytical problems in the proteomic analysis of cartilage and bone, analogous to those in the analysis of low-abundance proteins present in serum. The massive contents of carbohydrates present in cartilage proteoglycans, and hydroxyapatite in bone, further complicate the situation. However, the development of proteomic tools makes them more and more tempting also for research of musculoskeletal tissues. Application of proteomic techniques to the research of chondrocytes, osteoblasts, osteocytes, and osteoclasts in cell cultures can immediately benefit from the present knowledge. Here we make an overview to previous proteomic research of cartilage- and bone-associated samples and evaluate the future prospects of applying proteomic techniques to investigate key events, such as cellular signal transduction, in cartilage- and bone-derived cells.

1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf