umu.sePublications
Change search
Refine search result
1 - 15 of 15
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Blackburn, M.
    et al.
    Ledesma, Jose L. J.
    Näsholm, Torgny
    Laudon, Hjalmar
    Sponseller, Ryan A.
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Evaluating hillslope and riparian contributions to dissolved nitrogen (N) export from a boreal forest catchment2017In: Journal of Geophysical Research - Biogeosciences, ISSN 2169-8953, E-ISSN 2169-8961, Vol. 122, no 2, p. 324-339Article in journal (Refereed)
    Abstract [en]

    Catchment science has long held that the chemistry of small streams reflects the landscapes they drain. However, understanding the contribution of different landscape units to stream chemistry remains a challenge which frequently limits our understanding of export dynamics. For limiting nutrients such as nitrogen (N), an implicit assumption is that the most spatially extensive landscape units (e.g., uplands) act as the primary sources to surface waters, while near-stream zones function more often as sinks. These assumptions, based largely on studies in high-gradient systems or in regions with elevated inputs of anthropogenic N, may not apply to low-gradient, nutrient-poor, and peat-rich catchments characteristic of many northern ecosystems. We quantified patterns of N mobilization along a hillslope transect in a northern boreal catchment to assess the extent to which organic matter-rich riparian soils regulate the flux of N to streams. Contrary to the prevailing view of riparian functioning, we found that near-stream, organic soils supported concentrations and fluxes of ammonium (NH4+) and dissolved organic nitrogen that were much higher than the contributing upslope forest soils. These results suggest that stream N chemistry is connected to N mobilization and mineralization within the riparian zone rather than the wider landscape. Results further suggest that water table fluctuation in near-surface riparian soils may promote elevated rates of net N mineralization in these landscapes.

  • 2.
    Denfeld, Blaize A.
    et al.
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Klaus, Marcus
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Laudon, Hjalmar
    Swedish University of Agricultural Sciences.
    Sponseller, Ryan A.
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Karlsson, Jan
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Carbon Dioxide and Methane Dynamics in a Small Boreal Lake During Winter and Spring Melt Events2018In: Journal of Geophysical Research - Biogeosciences, ISSN 2169-8953, E-ISSN 2169-8961, Vol. 123, no 8, p. 2527-2540Article in journal (Refereed)
    Abstract [en]

    In seasonally ice‐covered lakes, carbon dioxide (CO2) and methane (CH4) emission at ice‐off can account for a significant fraction of the annual budget. Yet knowledge of the mechanisms controlling below lake‐ice carbon (C) dynamics and subsequent CO2 and CH4 emissions at ice‐off is limited. To understand the control of below ice C dynamics, and C emissions in spring, we measured spatial variation in CO2, CH4, and dissolved inorganic and organic carbon from ice‐on to ice‐off, in a small boreal lake during a winter with sporadic melting events. Winter melt events were associated with decreased surface water DOC in the forest‐dominated basin and increased surface water CH4 in the mire‐dominated basin. At the whole‐lake scale, CH4 accumulated below ice throughout the winter, whereas CO2 accumulation was greatest in early winter. Mass‐balance estimates suggest that, in addition to the CO2 and CH4 accumulated during winter, external inputs of CO2 and CH4 and internal processing during ice‐melt could represent significant sources of C gas emissions during ice‐off. Moreover, internal processing of CO2 and CH4 worked in opposition, with production of CO2 and oxidation of CH4 dominating at ice‐off. These findings have important implications for how small boreal lakes will respond to warmer winters in the future; increased winter melt events will likely increase external inputs below ice and thus alter the extent and timing of CO2 and CH4 emissions to the atmosphere at ice‐off.

  • 3.
    Denfeld, Blaize A.
    et al.
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences. Department of Ecology and Genetics/Limnology, Uppsala University, Uppsala, Sweden.
    Ricao Canelhas, Monica
    Weyhenmeyer, Gesa A.
    Bertilsson, Stefan
    Eiler, Alexander
    Bastviken, David
    Constraints on methane oxidation in ice-covered boreal lakes2016In: Journal of Geophysical Research - Biogeosciences, ISSN 2169-8953, E-ISSN 2169-8961, Vol. 121, no 7, p. 1924-1933Article in journal (Refereed)
    Abstract [en]

    Boreal lakes can be ice covered for a substantial portion of the year at which time methane (CH4) can accumulate below ice. The amount of CH4 emitted at ice melt is partially determined by the interplay between CH4 production and CH4 oxidation, performed by methane-oxidizing bacteria (MOB). Yet the balance between oxidation and emission and the potential for CH4 oxidation in various lakes during winter is largely unknown. To address this, we performed incubations at 2 degrees C to screen for wintertime CH4 oxidation potential in seven lakes. Results showed that CH4 oxidation was restricted to three lakes, where the phosphate concentrations were highest. Molecular analyses revealed that MOB were initially detected in all lakes, although an increase in type I MOB only occurred in the three lake water incubations where oxidation could be observed. Accordingly, the increase in CO2 was on average 5 times higher in these three lake water incubations. For one lake where no oxidation was measured, we tested if temperature and CH4 availability could trigger CH4 oxidation. However, regardless of incubation temperatures and CH4 concentrations, ranging from 2 to 20 degrees C and 1-500M, respectively, no oxidation was observed. Our study indicates that some lakes with active wintertime CH4 oxidation may have low emissions during ice melt, while other and particularly nutrient poor lakes may accumulate large amounts of CH4 below ice that, in the absence of CH4 oxidation, will be emitted following ice melt. This variability in CH4 oxidation rates between lakes needs to be accounted for in large-scale CH4 emission estimates.

  • 4. Faucherre, Samuel
    et al.
    Jørgensen, Christian Juncher
    Blok, Daan
    Weiss, Niels
    Siewert, Matthias Benjamin
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences. Department of Physical Geography, Stockholm University,Stockholm, Sweden.
    Bang-Andreasen, Toke
    Hugelius, Gustaf
    Kuhry, Peter
    Elberling, Bo
    Short and Long-Term Controls on Active Layer and Permafrost Carbon Turnover Across the Arctic2018In: Journal of Geophysical Research - Biogeosciences, ISSN 2169-8953, E-ISSN 2169-8961, Vol. 123, no 2, p. 372-390Article in journal (Refereed)
    Abstract [en]

    Decomposition of soil organic matter (SOM) in permafrost terrain and the production of greenhouse gases is a key factor for understanding climate change-carbon feedbacks. Previous studies have shown that SOM decomposition is mostly controlled by soil temperature, soil moisture, and carbon-nitrogen ratio (C:N). However, focus has generally been on site-specific processes and little is known about variations in the controls on SOM decomposition across Arctic sites. For assessing SOM decomposition, we retrieved 241 samples from 101 soil profiles across three contrasting Arctic regions and incubated them in the laboratory under aerobic conditions. We assessed soil carbon losses (C-loss) five times during a 1year incubation. The incubated material consisted of near-surface active layer (AL(NS)), subsurface active layer (AL(SS)), peat, and permafrost samples. Samples were analyzed for carbon, nitrogen, water content, C-13, N-15, and dry bulk density (DBD). While no significant differences were observed between total AL(SS) and permafrost C-loss over 1year incubation (2.32.4% and 2.51.5% C-loss, respectively), AL(NS) samples showed higher C-loss (7.94.2%). DBD was the best explanatory parameter for active layer C-loss across sites. Additionally, results of permafrost samples show that C:N ratio can be used to characterize initial C-loss between sites. This data set on the influence of abiotic parameter on microbial SOM decomposition can improve model simulations of Arctic soil CO2 production by providing representative mean values of CO2 production rates and identifying standard parameters or proxies for upscaling potential CO2 production from site to regional scales.

  • 5.
    Gudasz, Cristian
    et al.
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences. ARCUM.
    Sobek, Sebastian
    Bastviken, David
    Koehler, Birgit
    Tranvik, Lars J
    Temperature sensitivity of organic carbon mineralizationin contrasting lake sediments2015In: Journal of Geophysical Research - Biogeosciences, ISSN 2169-8953, E-ISSN 2169-8961, Vol. 120, no 7, p. 1215-1225Article in journal (Refereed)
    Abstract [en]

    Temperature alone explains a great amount of variation in sediment organic carbon (OC) mineralization. Studies on decomposition of soil OC suggest that (1) temperature sensitivity differs between the fast and slowly decomposition OC and (2) over time, decreasing soil respiration is coupled with increase in temperature sensitivity. In lakes, autochthonous and allochthonous OC sources are generally regarded as fast and slowly decomposing OC, respectively. Lake sediments with different contributions of allochthonous and autochthonous components, however, showed similar temperature sensitivity in short-term incubation experiments. Whether the mineralization of OC in lake sediments dominated by allochthonous or autochthonous OC has different temperature sensitivity in the longer term has not been addressed. We incubated sediments from two boreal lakes that had contrasting OC origin (allochthonous versus autochthonous), and OC characteristics (C/N ratios of 21 and 10) at 1, 3, 5, 8, 13, and 21°C for five months. Compared to soil and litter mineralization, sediment OC mineralization rates were low in spite of low apparent activation energy (Ea). The fraction of the total OC pool that was lost during five months varied between 0.4 and 14.8%. We estimate that the sediment OC pool not becoming long-term preserved was degraded with average apparent turnover times between 3 and 32 years. While OC mineralization was strongly dependent on temperature as well as on OC composition and origin, temperature sensitivity was similar across lakes and over time. We suggest that the temperature sensitivity of OC mineralization in lake sediments is similar across systems within the relevant seasonal scales of OC supply and degradation.

  • 6.
    Hotchkiss, Erin
    et al.
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences. Program in Ecology and Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming, USA.
    Hall, R. O., Jr.
    Baker, M. A.
    Rosi-Marshall, E. J.
    Tank, J. L.
    Modeling priming effects on microbial consumption of dissolved organic carbon in rivers2014In: Journal of Geophysical Research - Biogeosciences, ISSN 2169-8953, E-ISSN 2169-8961, Vol. 119, no 5, p. 982-995Article in journal (Refereed)
    Abstract [en]

    Rivers receive and process large quantities of terrestrial dissolved organic carbon (DOC). Biologically available (unstable) DOC leached from primary producers may stimulate (i.e., prime) the consumption of more stable terrestrially derived DOC by heterotrophic microbes. We measured microbial DOC consumption (i.e., decay rates) from contrasting C sources in 10 rivers in the western and Midwestern United States using short-term bioassays of river water, soil and algal leachates, glucose, and commercial humate. We added inorganic nutrients (ammonium and phosphorus) to a subset of bioassays. We also amended a subset of river, soil, and commercial humate bioassays with glucose or algal leachates to test the hypothesis that unstable DOC primes consumption of more stable DOC. We used prior measurements of source-specific DOC bioavailability, linked with a Bayesian process model, to estimate means and posterior probability distributions for source-specific DOC decay rates in multisource bioassays. Modeled priming effects ranged from a -130 to +370% change in more stable DOC decay when incubated with unstable DOC. Glucose increased modeled river DOC decay by an average of 87% among all rivers. Glucose and algal leachates increased soil leachate and commercial humate decay by an average of 25% above background rates. Inorganic nutrient additions did not have consistent effects on DOC decay, likely because most of the study rivers had high ambient background nutrients. Our results demonstrate that the priming effect can augment DOC decay in rivers. In addition, Bayesian models can be used to estimate mechanisms driving aquatic ecosystem processes that are difficult to measure directly.

  • 7. Isidorova, Anastasija
    et al.
    Bravo, Andrea G.
    Riise, Gunnhild
    Bouchet, Sylvain
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Björn, Erik
    Umeå University, Faculty of Science and Technology, Department of Chemistry.
    Sobek, Sebastian
    The effect of lake browning and respiration mode on the burial and fate of carbon and mercury in the sediment of two boreal lakes2016In: Journal of Geophysical Research - Biogeosciences, ISSN 2169-8953, E-ISSN 2169-8961, Vol. 121, no 1, p. 233-245Article in journal (Refereed)
    Abstract [en]

    In many northern temperate regions, the water color of lakes has increased over the past decades (lake browning), probably caused by an increased export of dissolved organic matter from soils. We investigated if the increase in water color in two lakes in Norway has resulted in increased burial of organic carbon (OC) and mercury (Hg) in the sediments and if the Hg was prone to methylation. Lake Solbergvann experienced a threefold water color increase, and OC burial increased approximately twofold concomitant to the water color increase. This lake had prolonged periods of anoxic bottom water, and anoxic OC mineralization rates were only about half of the oxic OC mineralization rates (7.7 and 17.5g C m(-2)yr(-1), respectively), contributing to an efficient OC burial. In Lake Elvaga, where water color increase was only approximately twofold and bottom water was oxygenated, no recent increase in OC burial could be observed. Hg burial increased strongly in both lakes (threefold and 1.6-fold in Lake Solbergvann and Lake Elvaga, respectively), again concomitant to the recent water color increase. The proportion of methylated Hg (MeHg) in surficial sediment was 1 order of magnitude higher in Lake Elvaga (up to 6% MeHg) than in Lake Solbergvann (0.2-0.6% MeHg), probably related to the different oxygenation regimes. We conclude that lake browning can result in increased OC and Hg burial in lake sediments, but the extent of browning and the dominating mode of sediment respiration (aerobic or anaerobic) strongly affect burial and fate of OC and Hg in sediments.

  • 8. Lapierre, Jean-Francois
    et al.
    Seekell, David A.
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Filstrup, Christopher T.
    Collins, Sarah M.
    Fergus, C. Emi
    Soranno, Patricia A.
    Cheruvelil, Kendra S.
    Continental-scale variation in controls of summer CO2 in United States lakes2017In: Journal of Geophysical Research - Biogeosciences, ISSN 2169-8953, E-ISSN 2169-8961, Vol. 122, no 4, p. 875-885Article in journal (Refereed)
    Abstract [en]

    Understanding the broad-scale response of lake CO2 dynamics to global change is challenging because the relative importance of different controls of surface water CO2 is not known across broad geographic extents. Using geostatistical analyses of 1080 lakes in the conterminous United States, we found that lake partial pressure of CO2 (pCO(2)) was controlled by different chemical and biological factors related to inputs and losses of CO2 along climate, topography, geomorphology, and land use gradients. Despite weak spatial patterns in pCO(2) across the study extent, there were strong regional patterns in the pCO(2) driver-response relationships, i.e., in pCO(2) regulation. Because relationships between lake CO2 and its predictors varied spatially, global models performed poorly in explaining the variability in CO2 for U.S. lakes. The geographically varying driver-response relationships of lake pCO(2) reflected major landscape gradients across the study extent and pointed to the importance of regional-scale variation in pCO(2) regulation. These results indicate a higher level of organization for these physically disconnected systems than previously thought and suggest that changes in climate and land use could induce shifts in the main pathways that determine the role of lakes as sources and sinks of atmospheric CO2. Plain Language Summary In this study we show that changes in climate and terrestrial landscapes could affect which are the main mechanisms responsible for the widespread emissions of CO2 by lakes. Although mechanisms such as aquatic primary production, respiration by microorganisms, or terrestrial loadings of carbon have been studied extensively, their relative importance across broad geographic extents with different climate or land use remains unknown. Based on an analysis of 1080 lakes distributed across the continental U.S., we show that lake CO2 dynamics depend on the climate and landscape context where these lakes are found, such as precipitation, elevation, percent agriculture, or wetlands in the lakes catchments. We observed a widespread effect of in-lake primary production, while the color of water, which has often been identified as one of the main controls of lake CO2 in northern lakes, was important in only a small fraction of the lakes studied. Our results show that controls on lake CO2 dynamics vary geographically and that considering that variation will be important for creating accurate global carbon models.

  • 9.
    Ninnes, Sofia
    et al.
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Tolu, Julie
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Meyer-Jacob, Carsten
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Mighall, Tim M.
    Bindler, Richard
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Investigating molecular changes in organic matter composition in two Holocene lake-sediment records from central Sweden using pyrolysis-GC/MS2017In: Journal of Geophysical Research - Biogeosciences, ISSN 2169-8953, E-ISSN 2169-8961, Vol. 122, no 6, p. 1423-1438Article in journal (Refereed)
    Abstract [en]

    Organic matter (OM) is a key component of lake sediments, affecting carbon, nutrient, and trace metal cycling at local and global scales. Yet little is known about long-term (millennial) changes in OM composition due to the inherent chemical complexity arising from multiple OM sources and from secondary transformations. In this study we explore how the molecular composition of OM changes throughout the Holocene in two adjacent boreal lakes in central Sweden and compare molecular-level information with conventional OM variables, including total carbon, total nitrogen, C:N ratios, delta C-13, and delta N-15. To characterize the molecular OM composition, we employed a new method based on pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS), which yields semiquantitative data on > 100 organic compounds of different origin and degradation status. We identify large changes in OM composition after deglaciation (circa 8500 +/- 500 B.C.), associated with early landscape development, and during the most recent 4050 years, driven by degradation processes. With molecular(-)level information we can also distinguish between natural landscape development and human catchment disturbance during the last 1700 years. Our study demonstrates that characterization of the molecular OM composition by the high-throughput PyGC/MS method is an efficient complement to conventional OM variables for identification and understanding of past OM dynamics in lake-sediment records. Holocene changes observed for pyrolytic compounds and compound classes known for having different reactivity indicate the need for further paleo-reconstruction of the molecular OM composition to better understand both past and future OM dynamics and associated environmental changes.

  • 10. Pappas, C.
    et al.
    Fatichi, S.
    Leuzinger, S.
    Wolf, Annett
    ETH, Inst Terr Ecosyst, CH-8092 Zurich, Switzerland.
    Burlando, P.
    Sensitivity analysis of a process-based ecosystem model: Pinpointing parameterization and structural issues2013In: Journal of Geophysical Research - Biogeosciences, ISSN 2169-8953, E-ISSN 2169-8961, Vol. 118, no 2, p. 505-528Article in journal (Refereed)
  • 11. Peralta-Tapia, Andres
    et al.
    Sponseller, Ryan A.
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Agren, Anneli
    Tetzlaff, Doerthe
    Soulsby, Chris
    Laudon, Hjalmar
    Scale-dependent groundwater contributions influence patterns of winter baseflow stream chemistry in boreal catchments2015In: Journal of Geophysical Research - Biogeosciences, ISSN 2169-8953, E-ISSN 2169-8961, Vol. 120, no 5, p. 847-858Article in journal (Refereed)
    Abstract [en]

    Understanding how the sources of surface water change along river networks is an important challenge, with implications for soil-stream interactions, and our ability to predict hydrological and biogeochemical responses to environmental change. Network-scale patterns of stream water reflect distinct hydrological processes among headwater units, as well as variable contributions from deeper groundwater stores, which may vary nonlinearly with drainage basin size. Here we explore the spatial variability of groundwater inputs to streams, and the corresponding implications for surface water chemistry, during winter baseflow in a boreal river network. The relative contribution of recent and older groundwater was determined using stable isotopes of water (O-18) at 78 locations ranging from small headwaters (0.12km(2)) to fourth-order streams (68km(2)) in combination with 79 precipitation and 10 deep groundwater samples. Results from a two end-member mixing model indicate that deeper groundwater inputs increased nonlinearly with drainage area, ranging from similar to 20% in smaller headwater subcatchments to 70-80% for catchments with a 10.6km(2) area or larger. Increases in the groundwater contribution were positively correlated to network-scale patterns in surface stream pH and base cation concentrations and negatively correlated to dissolved organic carbon. These trends in chemical variables are consistent with the production of weathering products and the mineralization of organic matter along groundwater flow paths. Together, the use of stable isotopes and biogeochemical markers illustrate how variation in hydrologic routing and groundwater contributions shape network-scale patterns in stream chemistry as well as patchiness in the relative sensitivity of streams to environmental change and perturbation.

  • 12.
    Semenchuk, Philipp R.
    et al.
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences. Institute for Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway; Center for Permafrost, Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark; University Center in Svalbard, Longyearbyen, Norway.
    Christiansen, Casper T.
    Grogan, Paul
    Elberling, Bo
    Cooper, Elisabeth J.
    Long-term experimentally deepened snow decreases growing-season respiration in a low- and high-arctic tundra ecosystem2016In: Journal of Geophysical Research - Biogeosciences, ISSN 2169-8953, E-ISSN 2169-8961, Vol. 121, no 5, p. 1236-1248Article in journal (Refereed)
    Abstract [en]

    Tundra soils store large amounts of carbon (C) that could be released through enhanced ecosystem respiration (ER) as the arctic warms. Over time, this may change the quantity and quality of available soil C pools, which in-turn may feedback and regulate ER responses to climate warming. Therefore, short-term increases in ER rates due to experimental warming may not be sustained over longer periods, as observed in other studies. One important aspect, which is often overlooked, is how climatic changes affecting ER in one season may carry-over and determine ER in following seasons. Using snow fences, we increased snow depth and thereby winter soil temperatures in a high-arctic site in Svalbard (78 degrees N) and a low-arctic site in the Northwest Territories, Canada (64 degrees N), for 5 and 9years, respectively. Deepened snow enhanced winter ER while having negligible effect on growing-season soil temperatures and soil moisture. Growing-season ER at the high-arctic site was not affected by the snow treatment after 2years. However, surprisingly, the deepened snow treatments significantly reduced growing-season ER rates after 5years at the high-arctic site and after 8-9years at the low-arctic site. We speculate that the reduction in ER rates, that became apparent only after several years of experimental manipulation, may, at least in part, be due to prolonged depletion of labile C substrate as a result of warmer soils over multiple cold seasons. Long-term changes in winter climate may therefore significantly influence annual net C balance not just because of increased wintertime C loss but also because of legacy effects on ER rates during the following growing seasons.

  • 13. Sobek, Sebastian
    et al.
    Gudasz, Cristian
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences. Umeå University, Arctic Research Centre at Umeå University. Department of Ecology and Genetics/Limnology, Uppsala University, Uppsala, Sweden.
    Koehler, Birgit
    Tranvik, Lars J.
    Bastviken, David
    Morales-Pineda, Maria
    Temperature dependence of apparent respiratory quotients and oxygen penetration depth in contrasting lake sediments2017In: Journal of Geophysical Research - Biogeosciences, ISSN 2169-8953, E-ISSN 2169-8961, Vol. 122, no 11, p. 3076-3087Article in journal (Refereed)
    Abstract [en]

    Lake sediments constitute an important compartment in the carbon cycle of lakes, by burying carbon over geological timescales and by production and emission of greenhouse gases. The degradation of organic carbon (OC) in lake sediments is linked to both temperature and oxygen (O-2), but the interactive nature of this regulation has not been studied in lake sediments in a quantitative way. We present the first systematic investigation of the effects of temperature on the apparent respiratory quotient (RQ, i.e., the molar ratio between carbon dioxide (CO2) production and O-2 consumption) in two contrasting lake sediments. Laboratory incubations of sediment cores of a humic lake and an eutrophic lake across a 1-21 degrees C temperature gradient over 157days revealed that both CO2 production and O-2 consumption were positively, exponentially, and similarly dependent on temperature. The apparent RQ differed significantly between the lake sediments (0.630.26 and 0.990.28 in the humic and the eutrophic lake, respectively; meanSD) and was significantly and positively related to temperature. The O-2 penetration depth into the sediment varied by a factor of 2 over the 1-21 degrees C temperature range and was significantly, negatively, and similarly related to temperature in both lake sediments. Accordingly, increasing temperature may influence the overall extent of OC degradation in lake sediments by limiting O-2 supply to aerobic microbial respiration to the topmost sediment layer, resulting in a concomitant shift to less effective anaerobic degradation pathways. This suggests that temperature may represent a key controlling factor of the OC burial efficiency in lake sediments.

  • 14.
    Tiwari, Tejshree
    et al.
    Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden.
    Sponseller, Ryan A.
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences.
    Laudon, Hjalmar
    Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden.
    Extreme climate effects on dissolved organic carbon concentrations during snowmelt2018In: Journal of Geophysical Research - Biogeosciences, ISSN 2169-8953, E-ISSN 2169-8961, Vol. 123, no 4, p. 1277-1288Article in journal (Refereed)
    Abstract [en]

    Extreme weather and climate events are predicted to increase in frequency and severity in the near future, which could have detrimental consequences for water quality in northern latitudes. Key processes that regulate the production and transport of solutes, like dissolved organic carbon (DOC), from soils to streams can be potentially altered by episodes of extreme temperature and/or precipitation. Here we use an intensively studied research catchment in northern Sweden with 23 years of data to ask how extreme antecedent climate events influence DOC concentration during snowmelt. Specifically, we used a combination of principal components analysis, cluster analysis, and multivariate partial least square analysis to show that almost every year provides some combination of extreme conditions in terms of intensity, duration, or frequency of temperature and/or rainfall. However, in terms of DOC responses to these events, variations in peak concentrations were most closely related to cold winter conditions, winter precipitation (snow), and temperature during the previous autumn. Specifically, years with most severe frost and icing during winter, but low winter precipitation, previous summer precipitation, and warmer autumns, showed the highest peaks in concentrations. In contrast, the lowest peak DOC concentrations were observed during spring snowmelt following high summer precipitation, colder autumns, and high winter precipitation. While this research highlights the importance of winter climate for influencing the DOC concentration during the spring, it also points to the potential importance of lag effects from preceding seasons on responses observed during the snowmelt season.

  • 15.
    Wilson, Scott D.
    et al.
    Umeå University, Faculty of Science and Technology, Department of Ecology and Environmental Sciences. Department of Biology, University of Regina, Regina, Saskatchewan, Canada.
    Schlaepfer, D. R.
    Bradford, J. B.
    Lauenroth, W. K.
    Duniway, M. C.
    Hall, S. A.
    Jamiyansharav, K.
    Jia, G.
    Lkhagva, A.
    Munson, S. M.
    Pyke, D. A.
    Tietjen, B.
    Functional Group, Biomass, and Climate Change Effects on Ecological Drought in Semiarid Grasslands2018In: Journal of Geophysical Research - Biogeosciences, ISSN 2169-8953, E-ISSN 2169-8961, Vol. 123, no 3, p. 1072-1085Article in journal (Refereed)
    Abstract [en]

    Water relations in plant communities are influenced both by contrasting functional groups (grasses and shrubs) and by climate change via complex effects on interception, uptake, and transpiration. We modeled the effects of functional group replacement and biomass increase, both of which can be outcomes of invasion and vegetation management, and climate change on ecological drought (soil water potential below which photosynthesis stops) in 340 semiarid grassland sites over 30year periods. Relative to control vegetation (climate and site-determined mixes of functional groups), the frequency and duration of drought were increased by shrubs and decreased by annual grasses. The rankings of shrubs, control vegetation, and annual grasses in terms of drought effects were generally consistent in current and future climates, suggesting that current differences among functional groups on drought effects predict future differences. Climate change accompanied by experimentally increased biomass (i.e., the effects of invasions that increase community biomass or management that increases productivity through fertilization or respite from grazing) increased drought frequency and duration and advanced drought onset. Our results suggest that the replacement of perennial temperate semiarid grasslands by shrubs, or increased biomass, can increase ecological drought in both current and future climates.

1 - 15 of 15
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf